15th Workshop on Detector Development Kirchhoff-Institut für Physik Heidelberg University

1-3 March 2023

The IDEA Calorimetry Concept and how to extend it to PFA

Roberto Ferrari INFN Pavia on behalf of the IDEA dual-readout calorimetry group

Heidelberg 02.03.2023

Foto: Heidelberg Marketing / Tobias Schwerdt

Recap

Disentangle relativistic (i.e. electromagnetic) and non relativistic (i.e. nuclear) components of hadronic shower

- \rightarrow get fem event by event
- \rightarrow dramatically improve hadronic energy resolution
- \rightarrow high granularity \rightarrow improve PID + allow for PFA

both scintillation & Cherenkov light

Dual-readout algebra

By solving the system, both E and f_{em} can be reconstructed:

 $E = (S - \chi C) / (1 - \chi)$

where:

$$\chi = (1 - (h/e)_S) / (1 - (h/e)_C)$$
$$= (E - S) / (E - C)$$

 \rightarrow χ can be extracted from testbeam data

3

DREAM/RD52 dual-readout spaghetti prototypes

2003 DREAM	Cu: 19 towers, 2 PMT each 2 m long, 16.2 cm radius Sampling fraction: 2% Depth: ~10 λ _{int}	Copper \leftarrow 2.5 \leftarrow 4
2012 RD52	Cu, 2 modules Each module: $9.2 \times 9.2 \times 250 \text{ cm}^3$ Fibers: $1024 \text{ S} + 1024 \text{ C}$, 8 PMT Sampling fraction: ~4.6% Depth: ~10 λ_{int}	
2012 RD52	Pb, 9 modules Each module: $9.2 \times 9.2 \times 250$ cm ³ Fibers: 1024 S + 1024 C, 8 PMT Sampling fraction: ~5.3% Depth: ~10 λ_{int}	

IDEA: Innovative Detector for e+e- Accelerator

IDEA baseline concept

- Muon chambers
 µ-RWELL in return yoke
- + Dual-readout calorimetry 2 m / 7 λ_{int}
- Thin superconducting solenoid
 - ◆ 2 T, 30 cm, ~ 0.7 X₀ , 0.16 λ_{int} @ 90°
- Highly transparent for tracking
 - Si pixel vertex detector
 - Drift Chamber
 - Si wrappers (strips)
- ✦ Beam pipe: r ~ 1.5 cm

IDEA all-fibre DR calorimeter option

- DR fibre calorimeter
 - ~ 130 M fibres \blacklozenge
 - 1 mm ø, 1.5 mm pitch
 - copper absorber \blacklozenge
 - 75 projective towers × 36 slices +
 - $\Delta \vartheta = 1.125^\circ, \Delta \phi = 10.0^\circ$
 - ϑ coverage: down to ~100 mrad \blacklozenge
- G4 simulation available \blacklozenge
 - tuned to RD52 TB data \blacklozenge

5m

- Gaussian resolution
- Adequate separation of W / Z / H

Usage of timing for e/π separation (RD52 results)

Combination of cuts: >99% *electron efficiency*, <0.2% *pion mis-ID*

Testbeam module (brass absorber): dimensions: 133.2×133.2×250 cm³ Reduced granularity (1.2×1.2 cm², 32 S & 32 C fibres): 111×111 modules Simulation of both detector and SiPM response Feature extraction: E(Q), Pk, ToP, ToA, ToT \rightarrow each event represented by 111×111×5×2 tensor

Two DNN architecture variants studied:

- VGG-11 like (VGG = Visual Geometry Group, Oxford Un.)
- Dynamic Graph CNN (DGCNN)

6 event classis (covering ~ 90% of τ decays) Training set: 6 BR × 2000 evts

VGG example

NN performance

Confusion matrix on test set

Heidelberg, 02.03.2023

Predicted BR

No SiPM response simulation

 \rightarrow information: fibre signal output (# p.e.)

3-class classification: $\tau_{lep}, \tau_{had}, QCD$ jet

8-class classification: τ₀, τ₁, τ₂, τ₃, τ₄, τ₅, τ₆, QCD jet

[τ from Z $\rightarrow \tau\tau$ decays]

3-class label	8-class label	
0	0	$\tau \rightarrow \mu \nu \nu$
0	1	$\tau \rightarrow evv$
1	2	$T \rightarrow \pi V$
1	3	$\tau \rightarrow \pi \pi^0 \nu$
1	4	$\tau \rightarrow \pi \pi^0 \pi^0 \nu$
1	5	$\tau \rightarrow \pi \pi \pi \nu$
1	6	$\tau \rightarrow \pi \pi \pi^0 v$
2	7	$Z \rightarrow qq$ jets

DGCNN w/ geometrical information only

DGCNN optimised but w/o #pe as input feature B field and material in

avg accuracy: 73.7%

Heidelberg, 02.03.2023

6.95	0.79	0.62	0.03	0.00	0.00	1.58	0.03	
3.09	89.03	3.48	0.41	2.02	0.39	1.44	0.14	
1.77	4.83	80.45	9.25	1.61	1.67	0.16	0.25	
0.30	0.38	10.43	84.55	0.16	3.87	0.05	0.25	
0.16	3.52	1.38	0.35	84.82	8.79	0.03	0.95	
0.11	0.24	1.98	2.60	10.19	82.60	0.08	2.20	
2.53	0.48	0.11	0.00	0.03	0.00	96.82	0.03	
0.08	0.25	0.19	1.05	2.54	4.08	0.06	91.75	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×1					~	                                                                                                                                                                                                                                                                                                                                                     	<b>Դ</b>
L	2		2	no i			2	9.0
		Р	redi	cted	BR	102		v

input: fibre coordinates + type
avg accuracy: 88.3% (w/ #p.e. 90.8%)

# Longitudinal segmentation w/ timing (U.S.)

Dual-readout fibre calorimeter  $\rightarrow$  signal sampled at 20 GHz

Cu absorber (2 m deep)

**Fibres along beam direction**: 1 mm Φ fibres, 1.5 mm spacing

Transverse segmentation: 1×1 cm² for 2D analysis, 3×3 cm² for 3D analysis



### 3D imaging fibre DR calorimeter coupled to Graph DNN

### Preliminary results No optimisation

# Longitudinal segmentation w/ timing (U.S.)



Table 1. The energy resolution of the 3D GNN reconstruction with various timing resolutions for longitudinal segmentation.

Timing Resolution $\Delta(t)$ , ps	Position Resolution $\Delta(z)$ , cm	Energy Resolution @ 100 GeV $\sigma/E$ , %
0	0.0	3.6
100	5.0	^{3.9} only charankay fibras
150	7.5	4.0 Unity Cherenkov hores
200	10.0	4.2

# Longitudinal segmentation w/ timing (S.K.)

Full SiPM signal sampled at 10 GHz

FFT used to mitigate exponential tail

Unlocks full longitudinal information about energy deposit

Combined with DR information allows in-shower cluster identification





# Waveform digitisation (U.S.)

Results with SensL (MicroFC-30020SMT): SiPM with both fast and standard outputs



**One-photon event** 

Two-photon event (simultaneous)

Two-photon event (5 ns apart)



### **NALU Scientific** AARDVARC v3

- Sampling rate 10-14 GS/s
- 12 bits ADC
- 4-8 ps timing resolution
- 32 k sampling buffer
- 2 GHz bandwidth
- System-on-Chip (CPU)



## Segmented Crystal EM Precision Calorimeter

### Ongoing efforts within US Calvision, IDEA and Crystal Clear collaborations

Proof-of-concept with lab measurements and prototypes (PWO, BGO, BSO, ... with SiPMs)

Ongoing simulation effort in DD4HEP and FCC software + DR-PFA developments



## Crystal option (IDEA++)

### ✦ ECAL ~20 cm PbWO₄

- ✤ 2 layers: 6+16 X₀
- DR with filters
- *o*_{EM} ≈ 3% /√E
- timing layer
  - LYSO:Ce crystals
  - $\sigma_t \sim 20 \text{ ps}$
- HCAL layer
  - $\sigma_{HAD}/E \sim 26\%/\sqrt{E}$



- magnetic field ON but NO tracker
- Gaussian smearings of MC tracks according to expected IDEA tracker performance
- for each track extrapolate impact point
- remove and store tracks not reaching calo



- magnetic field ON but NO tracker
- Gaussian smearings of MC tracks according to expected IDEA tracker performance
- for each track extrapolate impact point
- remove and store tracks not reaching calo
- identify EM neutral clusters (photons) by cluster radius  $E_{\text{seed}}$ R

$$C_{\text{transverse}} = \frac{1}{\sum_{i} E_{\text{hit},i} (\Delta R_i < 0.013)}$$

remove and store photons (R<0.9)</li>



- magnetic field ON but NO tracker
- Gaussian smearings of MC tracks according to expected IDEA tracker performance
- for each track extrapolate impact point
- remove and store tracks not reaching calo
- identify EM neutral clusters (photons) by cluster radius  $E_{\text{seed}}$  $R_{\rm transverse} =$



- remove and store photons (R<0.9)</li>
- for each track, rank calo hits by distance



- magnetic field ON but NO tracker
- Gaussian smearings of MC tracks according to expected IDEA tracker performance
- for each track extrapolate impact point
- remove and store tracks not reaching calo
- identify EM neutral clusters (photons) by cluster radius  $E_{\text{seed}}$  $R_{\text{transverse}} =$  $\overline{\sum_{i} E_{\text{hit},i}(\Delta R_i < 0.013)}$

- remove and store photons (R<0.9)</li>
- for each track, rank calo hits by distance
- collect hits in cone(s)





## IDEA++ dual-readout-PFA







- ... continue
- apply k_t algorithm (e.g. Durham) for two jets



## finally ...



## dual-readout in Pandora PFA

build a NN based algorithm for jet reconstruction and insert it in Pandora interfaced to key4HEP



## dual-readout in Pandora PFA

flowchart:

1. build calorimeter clusters with one of Pandora algorithms

### Pandora Interface to NN training

Pandora tool-> Input data format

> Clustering algorithm

Training NN outside Pandora (using GPU for example)

flowchart:

- 1. build calorimeter clusters with one of Pandora algorithms
- 2. apply dual-readout formula

### Pandora Interface to NN training

Pandora tool-> Input data format

> Clustering algorithm

Training NN outside Pandora (using GPU for example)

flowchart:

- 1. build calorimeter clusters with one of Pandora algorithms
- 2. apply dual-readout formula
- 3. NN particle identification (with "charged" cluster removal) to be developed for Pandora



### Pandora Interface to NN training

Pandora tool-> Input data format

> Clustering algorithm

Training NN outside Pandora (using GPU for example)

### flowchart:

- 1. build calorimeter clusters with one of Pandora algorithms
- 2. apply dual-readout formula
- 3. NN particle identification (with "charged" cluster removal) to be developed for Pandora
- 4. NN jet reconstruction algorithm to be developed for Pandora



### Pandora Interface to NN training

Pandora tool-> Input data format

> Clustering algorithm

Training NN outside Pandora (using GPU for example)

## NN training on GPUs

started working on electrons

using Tensorflow interfaced with Keras

60000 info per event in average

GPU memory issues / CPU time issues



## Very preliminary results



### Performance still worse than standard reconstruction Too naive architecture? *Work in progress*

Heidelberg, 02.03.2023

IDEA calorimetry concept evolving

R&D ongoing on many directions

High (pointing) granularity complemented by timing measurements may provide highly performant results

Usage of PFA should also boost it

EM crystal option appears to boost EM calorimetry performance without spoiling hadronic one

... but ...

IDEA calorimetry concept evolving

R&D ongoing on many directions

High (pointing) granularity complemented by timing measurements may provide highly performant results

Usage of PFA should also boost it

EM crystal option appears to boost EM calorimetry performance without spoiling hadronic one

... but ...

we need to demonstrate it with working and sizeable prototypes  $\rightarrow$  work in progress hopefully we will soon get dual-readout and Pandora speaking each other

# Backup

Heidelberg, 02.03.2023

Three main activity pillars:

- 1) South Korea  $\rightarrow$  projective fibre-sampling calorimeter
- 2) Europa: INFN, Sussex University  $\rightarrow$  fibre-sampling calorimeter
- 3) U.S. (Calvision project)  $\rightarrow$  mainly (but not only) on crystal em calorimeter

## 2022 Korean-prototype beam test







Heidelberg, 02.03.2023

Module #2

Tower#1	Tower#2	Tower#3
Tower#4	Tower#5	Tower#6
Tower#7	Tower#8	Tower#9

# IDEA 2020 em-size bucatini prototype (EU)

### Nine $\sim$ 3.5 × 3.3 cm² towers



### One tower (i.e. 360 fibres) w/ highly-granular (SiPM) readout





### **Scintillation fibers**

**Cherenkov** fibers

Lateral profile: average signal in fibre at distance r from shower barycentre

Measurement: for every event and every fibre populate plot of signal vs. distance

Lateral profiles extracted as average value for every x-bin



### Data vs. Geant4 simulation

## Other results



Angular dependence (from MC)

**EM** resolution



Need another beam test Need beam purity Need correct detector setup (angle, preshower)

Heidelberg, 02.03.2023

Good resolutions averaged over eta and phi



## Event displays



50 GeV e-

Heidelberg, 02.03.2023

### 100 GeV $\pi^0$

## Alternative to SiPMs?



- SPAD array in CMOS:
  - complex functions embedded in single substrate (e.g. SPAD masking, counting, TDCs)
  - front-end electronics optimised to preserve signal integrity ( $\rightarrow$  timing)
  - simplified assembly of large area detectors
  - R&D costs relatively low for design over standard process

### digital SiPMs (dSiPMs)

### no need for analogue signal post-processing

# Requirements

	Scintillating (Cherenkov)
Unit Area (mm²)	1 x 1
Micro-cell pitch (µm)	10 or 15
Macro-pixel	500 x 500 (or less)
PDE (%)	(20 - 50)
DCR (kHz)	Not crucial
AP (%)	As low as possible ( $\approx$ 1)
Xtalk (%)	As low as possible (few %)
Trigger	External
Data: light intensity	Number of fired cells in 1 or 2 time windows (tenths ns long)
Data: time	Time of Arrival in the time window (< 100 ps) possibly TOT
Final - Package	Strip with 8 units
Connection	BGA

## South Korea activities

Investigating:

- Absorber production and assembly procedure
- Fibre types (round, square, single/double cladding)
- Light sensors (PMTs, MCP-PMTs, SiPMs)

Absorber production:

- 3D printing  $\rightarrow$  excellent accuracy but pretty expensive
- Stacking (LEGO-like)  $\rightarrow$  good accuracy and quite cheap
- Skiving Fin Heat Sinks  $\rightarrow$  high accuracy and low cost

2025: full-size projective prototype

### Prototype Detector (2025)



### 5x5 (460 mm)

## 2 modules tested w/ beam in 2022



### **Configuration of Fibers & Readout detector for Test Beam**



	Tower #1	Tower #2	Tower #3	Tower #4
Scintillation fibers	Round	Round	Round	Square
	/	/	/	/
	Single cladding	Double cladding	Single cladding	Single cladding
Cherenkov fibers	Round	Round	Round	Round
	/	/	/	/
	Single cladding	Single cladding	Single cladding	Single cladding
Readout detector (2*4 ch)	2 PMTs	2 PMTs	2 MCP-PMTs	2 PMTs

10225		
ar of		
and the second second	COULT COULT COULT	
ALC: NO.	CONTRACTOR OF STREET	
	2.2.0.0.0.0.0.0.0	
	and the second sec	
distant in	Training to the second second	
	E.S. Contraction of the local division of the local division of the local division of the local division of the	
0 F 5	entrower 6	
	Second Second Second	
10000	ACCOUNTS OF THE OWNER.	
CHARGE BOX	SINCE STREET,	
Party and	CONTRACTOR OF TAXABLE PARTY.	
COLUMN TWO IS NOT	CONTRACTOR OF THE	
THE R. LEWIS	CHARLES STREET	
	Contractory of the local division of the loc	
and the second	STREET, DOGGEST & VOI	
description of	Construction of the local division of the lo	
A COLOR OF	COMPANY OF THE OWNER.	
		-
		Go
		-
	1	
	1	

	Tower #1~4 and #6~9	Tower #5
Scintillation fibers	Round / Single cladding	Round / Single cladding
Cherenkov fibers	Round / Single cladding	Round / Single cladding
Readout detector (400+16 ch)	16 PMTs	400 SiPMs

### - Optical fibers - Scintillation fibers & Cerenkov fibers (Kuraray SCSF-78) (Mitsubishi SK-40)



Module#2



### Module#2

Tower#1	Tower#2	Tower#3
Tower#4	Tower#5	Tower#6
Tower#7	Tower#8	Tower#9

### ombination of fibers for Module#2

## 2 modules tested w/ beam in 2022



- Read out information
- PMT (16ch) + SiPM (416ch, T.5)



MCP-PMT	Window	size	lig	ht	Q Effici	uantum inecy (Q.E.	.) ma	x. HV (V)	Rise time (ns)	Pulse width (ns)	photo	
PLANACON XP85012	52x52 m	<b>m</b> ²	scinti	lation	~7%	at 550 nm		2400	0.6	1.8		
PLANACON XP85112	55855 11		Cere	nkov	~21%	% at 400 nm		2800	0.5	0.7		1
РМТ	Window size	Q.E.	for Ck.	Q.E. for	Sc. r	nax. HV (V)			Time response (ns)		photo	
							anode	pulse rise time	electron transit time	Transit time spread (FWH	(N)	
R8900 series (old)	23.5x23.5 mm²	35% r	at 420 nm	~7% at nm	550	1000		2.2	11.9	0.75		7
R11265-100 (new)	23x23 mm ²	~35 400	5% at D nm	~7% at nm	550	1000		1.3	5.8	0.27		
SiPM	photosensitiv e area	ph	oto dete (	tion effic DE)	ciency	opera volta	iting age	Gain at V _{BD} +5V	Linearity of Q.	E. number of pixels	geo. Fill factor	
S14160-1310PS	1.3x1.3 (1.69 mm²)	~15%	% at 400 nm	~17% a	at 550 nm	Vbreaking Do	wn + 5 V	~1.75x10 ⁵	as incident photor	16675	31 % (0.524 mm²)	
fiber (Φ1 mm)	0.785 mm ²									~7745 (effectively)		

## DAQ system

1000

### System made of 15 DAQ Boards + 1 TCB Board

- DAQ Board:
  - One board covers 32 channels
  - DRS4 chip (from 0.7 Gsps to 5 Gsps with 1024 sampling points)
  - 16 pin Ribbon cable

### **TCB Board**

- Control the setting value of DAQ boards and the trigger system
- Connect DAQ boards with TCP/IP cable, cover 40 ch DAQ



All boards connected with PC using **USB3** line



## HiDRa – Highly granular Dual-Readout demonstrator (INFN)



1 Module: 5 MMs ~ 13 × 13 cm²

1 MiniModule:

64 × 16 = 1024 fibres in total

512 S + 512 C

## Capillary tube parameters

### **Dimensions**:

- External diameter: 2 ( $\pm$  0.050) mm  $\leftarrow$  from SiPM dimensions
- Internal diameter: 1.1 (-0 +0.1) mm  $\leftarrow$  from fibre dimensions
- Length: 2.5 m  $\leftarrow$  from containment studies

 $\rightarrow$  3% sampling fraction

### Material:

• Stainless steel  $304 \leftarrow$  cheaper than brass, comparable performance

## **Geant4** simulations

Pion resolution in [10, 100] GeV Range



### Absorber choice

### χ2 / ndof



### Calorimeter depth

### Low-energy tails

# Capillary QA/QC

- Straightness: rolling on plane surface
- Length: checking relative length of tubes
- ID: pass/fail test with inserting fibres



## Tube gluing







### Stiffback-like technique for tube handling, gluing and positioning

## PMT readout: fibre grouping



Heidelberg, 02.03.2023

# SiPM integration and readout



- 2 mm SiPM interspace
- Two options under study: 10 and 15 µm pitch



- Each SiPM bar operated at same voltage ( $V_{bd}$ <0.15V)
- Signals from 8 SiPMs summed up in grouping board

• Custom designed module with 8 SiPMs (1x1 mm²) from Hamamatsu

## SiPM integration and readout

Readout based on Caen FERS system (5200) and A5202 boards



## FERS readout integration in EUDAQ



- Modular data acquisition framework, in C++
- Open source, compatible with different OSs
- Finite-State Machine implemented
- HW-specific parts decoupled from core software
- Raw data can be converted to LCIO format
- Many detector prototypes at DESY II Test Beam Facility integrated in EUDAQ
- EUDAQ used in several test setup at CERN: ALICE, ATLAS, Belle II, CALICE, CMS, and others

EUDAQ - A data acquisition software framework for common beam telescopes P. Ahlburg et al 2020 JINST 15 P01038

# FERS readout integration in EUDAQ

### **ALREADY DONE**

- CAEN FERS library integrated in EUDAQ
- FERS configuration implemented

State:						
Curre	ent Sta	ate: Co	onfigure	d		
Control						
Init file:	/home/persiani	/eudaq_rino/user	/fers/misc/fers.ini		Load	Init
Config file:	/home/persiani	/eudaq_rino/user	/fers/misc/fers.conf		Load	Config
Next RunN:					Start	Stop
			24%		Reset	Terminate
Log:					Log	✓ LogConfig
ScanFile	/home/persiani	/eudaq/user/exar	mple/misc/scan/Exam	npleScan.scan	Load	Start Scan
Run Number log: SERVER	t: 1	L9 (next run) cp://44963	my_fers0:	Producer:	0 Events	
Connections						
type	▲ name	state	connection	message	information	1

### TO DO

- Development in EUDAQ of DCR and multiphoton spectrum measurements for SiPM mass characterisation
- Handling (storing and then uploading) of FERS & SiPM configurations with DB
- Setting up EUDAQ for test beam using FERS modules



INFN - Sezione di Catania & UNICT

K EUDAQ Log Collector				$\times$
Level: From: O-DEBUG ~ All ~	Search:			
Received Sent 16:50:57.207 16:50:57.106 16:50:57.207 16:50:57.107 16:50:58.538 16:50:58.538 16:51:11.779 16:51:11.778 16:51:11.779 16:51:11.779 16:51:11.779 16:51:11.779 16:51:11.779 16:51:11.779	Level Text 4-INFO Receive an INI section 4-INFO Producer.my_fers0 is to be init 4-INFO Producer.my_fers0 is initialised 4-INFO Receive a CONF section 4-INFO Receive a CONF section 4-INFO Producer.my_fers0 is to be producer.my_fers0 is configure	ialised 4. d figured rd.	From Producer.my Producer.my RunControl.R Producer.my Producer.my Producer.my	File Connu Connu RunCC Comm Produ Comm
				-
<pre>Seperation@LAPTOP-GA4KV2TA: -//</pre>	eudag_rino LANE_ID> C>  >1 >1 >1 x xPSO/FERS_DEV_LOCK_PATH> HW_IMAX> HW_Vbias> ./user/fers/misc/conf/conf_0.txt NFO) [Producer.my_fers0 ]Producer.my -29 16:51:11.779] (TMFO) [Producer.my NFO) [Producer.my_fers0 ]Producer.my	y_fers0 is to be configured ndan]Producer.my_fers0 is con y_fers0 is configured.	– –	× ^
NORSLANDØLAPTOP-GAAKVZTA:-/*				TS Busit Online CPG0[31] (A)           TS Busit Online CPG0[32] (A)
3.07				
5000				
104	160 200 T	220 240 vreshold	260	
$10^{3} = \frac{1}{10} + $				
10 ⁻¹ 10 ⁻² 10 ⁻³ 10 ⁻⁴ 24		0 32	34	36