

MAX-PLANCK-INSTITUT FÜR PHYSIK

NEW DEVELOPMENTS IN TIMING RPCS

Oliver Kortner 15th Terascale Detector Workhop Heidelberg, 03.03.2023

RESISTIVE PLATE CHAMBER CONCEPT

RPC as proposed by Cardarelli and Santonico in 1981 (NIM 187 (1981)377-380)

- Parallel plate geometry with resistive electrodes to prevent shorts between the electrodes at high gas gains.
- Smooth inner surface of the electrode required to prevent point discharges.
- Fast response \sim ns and excellent time resolution \ll 1 ns.
- High-rate capability defined by the resisitivity of the electrodes.
- Spatial resolution defined by the granularity of the pick-up strips.
- Ideal for the cost-effective instrumentation of large area where decent spatial and excellent temporal resolution is required.

CURRENT GERMAN INVOLVEMENT IN THE RPC DEVELOPMENT

Institutes with RPC developments

- Helmholtz-Zentrum Dresden-Rossendorf
- University of Heidelberg
- Max-Planck Institute for Physics Munich

German involvement in RPC R&D

- ► TOF systems for experiments at FAIR (Dresden, Heidelberg).
- Thin-gap RPCs for the ATLAS phase-I and phase-II muon spectrometer upgrades (MPI Munich).
- Topics followed by all three institutes:
 - Search for alternative gas mixtures.
 - Search for alternative electrode materials.
 - Aging studies.

TIME-OF-FLIGHT SYSTEM FOR CBM

Compressed Baryonic Matter (CBM) Experiment

CBM-TOF requirements

- ► Time resolution ~80 ps.
- ▶ Efficiency > 95%.
- Rate capability \leq 50 kHz/cm².
- Active area of 120 m².

 $https://indico.cern.ch/event/1123140/contributions/5010232/attachments/2516082/4325787/deppner_RPC2022.pdf$

CHARGED PARTICLE FLUXES IN CBM-TOF

Particle flux

Structure of the TOF

- In order to cope with the high particle fluxes in the central yellow region electrodes of low resistivity glass, ρ ≈ 10¹⁰ Ω cm are used.
- Counters with higher-resistivity thin float glass, $\rho = 10^{12} \Omega$ cm are used.

MULTIGAP RPC PROTOTYPE FOR CBM-TOF

- Symmetric structure: 5 gaps × 2 stacks.
- Gas gap thickness: 200 μm.
- Active area 60/100/200 mm×300 mm.
- Electrode: $\rho = 10^{10} \Omega$ cm. 0.7 mm thick glass.
- Gas mixture: C₂H₂F₄:SF₆(97.5:2.5).

- Required efficiency and time resolution was achieved.
- Aging caused by F ion deposition on the electrodes.
- Strategy to solve this problem: improve/increase gas flow.

Upgrade of the ATLAS muon spectrometer

Installation of additional RPCs with increased high-rate capability in the inner barrel layer to recuperate muon trigger efficiency.

ATLAS THIN-GAP RPC

- Electrode material: phenolic high-pressure laminate (ρ = 10¹⁰ Ωcm).
- Gas mixture: C₂H₂F₄/iso-C₄H₁₀/SF₆ (94.7/5/0.3)

Detector parameter	Legacy RPC	New thin-gap RPC
Gas gap width	2 mm	1 mm
Electrode thickness	1.8 mm	1.4 mm
FE technology	GaAs	Si&Si-Ge
FE effective threshold	2-3 mV	0.2-0.3 mV
FE power consumption	30 mW/ch	12 mV/ch

 Rate capability and longevity: up to 10 kHz/cm² for ten years of HL-LHC operations.

CHALLENGES FOR THE BI RPC UPGRADE

Challenging requirement

- Very compact mechanical structure needed to fit into the limited available space.
- Very rigid mechanical structure required in order to avoid conflicts with the sMDT chamber.
- RPC gaps must be produced within tight mechanical tolerances.

Phase-I pilot project "BIS78"

Installation of thin-gap RPCs in the barrel end-cap transition region.

MECHANICAL STRUCTURE FOR BIS-78 RPC TRIPLETS

- Rigidity of present RPCs achieved by 5 cm thick honeycomb plates.
- \Rightarrow Impossible within 6 cm envelope of BIS-78.

Solution for BIS-78

MEASUREMENT OF THE RIGIDITY OF THE BIS-7 MECHANICS

Measurement of the height of the bottom of the mechanical structure under the load of an RPC triplet

Sag of the stiffening rods <2 mm.

PERFORMANCE OF THEINSTALLED BIS78 THIN-GAP RPCs

ESTABLISHING A NEW THIN-GAP RPC MANUFACTURER

- ► Huge demand for thin-gap RPCs in the future (ATLAS upgrade, ANUBIS, ecc.)
- Need for a production fulfilling the tight mechanical requirements on the gas gaps.
- Supported by the Tor Vergata RPC group, the ATLAS group at the MPI for Physics has therefore started to establish two additional manufacturers: PTS Maschinenbau, Mirion Technologies:
 - 2021: Adaption of the gas gap production procedure to industrial standards.
 - ▶ 2022: Production of small-size 40×50 cm² test sample RPCs at the two companies.
 - Spring 2023: Production of 18 full-size ATLAS RPC gaps at the two companies.
 - ▶ May 2023-April 2024: Aging test of the 18 RPC gaps for certification of the production.

A FEW PHOTOS FROM THE TEST SAMPLE PRODUCTION Gluing template

Electrode in the template

Electrode after first gluing step

A FEW PHOTOS FROM THE TEST SAMPLE PRODUCTION

Functional tests of the test sample RPCs

SEARCH FOR ECO-GAS MIXTURES

Standard gas mixture: $C_2H_2F_4/i - C_4H_{10}/SF_6$.

- High gas density ensuring sufficient primary ionization even for gas gaps in the millimeter range size.
- Prompt charge slowly increasing with the applied voltage and high enough to overcome the FE threshold.
- Total delivered charge low enough to ensure modest working current and good rate capability.
- Large separation of avalanche and streamer mode.
- Non-flammable.

Disadvantages of the standard gas mixture

- ► High global warming potential (GWP): 1450.
- Use of $C_2H_2F_4$ forbidden by the EU since 2011. \Rightarrow Future availability of $C_2H_2F_4$ unclear.

STRATEGY FOR NEW ECO-GAS MIXTURES

- Reduction of the GWP to 200 by replacing the tetrafluorethane by $CO_2/C_3H_2F_4$.
- Further reduction of the GWP to ~ 10 by replacing SF₆ by chlortrifluorpropene C₃H₂ClF₃.
- The candidate eco-gas mixture CO₂/C₃H₂F₄ + i C₃H₁₀ + C₃H₂ClF₃ must have similar physical properties like the standard gas in terms of
 - Detection efficiency.
 - Avalanche and streamer mode separation.
 - Total charge delivered inside the gas.
 - Time resolution.
- The new mixture must be possible to operate the legacy RPCs which are installed in ATLAS and CMS.

Selection of the mixing ratio of the new components

- Efficiecny turn-on moves to large operating voltages with increasing C₃H₂ClF₃ fraction.
- No separation of avalanche and streamer mode without C₃H₂ClF₃.
- Separation between avalanche and streamer mode ~ 400! V for all gas mixtures containing C₃H₂ClF₃.

Candidate gas mixture (with the lowest ionic charge):

 $CO_2/C_3H_2F_4+i-C_3H_{10}+C_3H_2ClF_3\ (76/15/7/2)$

COMPARISON OF THE NEW AND THE STANDARD GAS MIXTURE

Performance of a legacy RPC

- Similar operating voltages of the new and standard mixtures.
- Steeper efficiency turn-on for the standard mixture.
- Singificantly larger avalanche-streamer separation of the standard gas than of the new gas.
- Avalanche-streamer separation of the new gas still acceptable.

TIME RESOLUTION WITH THE NEW GAS MIXTURE

Legacy RPC

https://indico.cern.ch/event/1123140/contributions/5000800/attachments/2517497/4328395/RPC_2022_3.pdf

▶
$$\sigma_t^{\text{ECO}} = (0.83 \pm 0.03) \, \text{ns} < \sigma_t^{\text{standard}} = (1.09 \pm 0.07) \, \text{ns!}$$

Final qualification of the new mixture requires a successful aging test which is ongoing in the GIF++ at CERN.

RPCs at future experiments

RPCs are considered for several future experiments like:

- Search for long-lived particles with ANUBIS.
 - ~1200 RPC gas gaps needed per access shaft.
 - Industrialization of the gas gap production crucial for a timely production of all the required gaps (eventually split over different countries).

- Myon system of the CLD detector can use current thin-gap RPC technology, will have to operate with an eco-friendly gas mixture.
- The Fe-DHCAL option for the CALICE digital hadron calorimeter with RPCs will need low-resistivity electrodes and an eco-friendly gas mixture offering the required high-rate capability and longevity.
- Stations of thin-gap RPCs and sMDT chambers used in the muon system of the baseline FCC-hh detector. Thin-gap RPCs with sufficient longevity for γ background rates of up to 30 kHz/cm² needed.

SUMMARY

- RPCs are ideal for the instrumentation of large areas where decent spatial resolution (~mm) and excellent time resolution (~10-100 ps) are required.
- The limitation of the high-rate capability of glass RPCs can be overcome by the availability of affordable low-resistivity glasses.
- The new thin-gap RPCs with phenolic HPL electrodes are suitable for 10 years of HL-LHC operation at a γ background hit rate of up to 10 kHz/cm².
- The certification of two new manufacturers of thin-gap RPCs is ongoing and will provide the required production capacities for thin-gap RPCs for future experiments.
- There is a lot of progress in the search for eco-friendly RPC gas mixtures with aging tests ongoing.