

15th Terascale Detector Workshop 2023

# hhu,

### Search for Dark Matter with Quantum-Inspired Technologies

Present some recent ideas and developments that emerged from precision experiments taylored to measuring fundamental constants at the low energy frontier





### **Stefan Ulmer**

HHU Düsseldorf / RIKEN

2023/03/01





BSE

STE p





東京大学



JOHANNES GUTENBERG UNIVERSITÄT MAINZ









## BASE – Collaboration

- Mainz: Measurement of the magnetic moment of the proton, implementation of new technologies.
- **CERN-AD:** Measurement of the magnetic moment of the antiproton and proton/antiproton q/m ratio
- **BASE-STEP:** Development of transportable antiproton traps
- Hannover/PTB: QLEDS-laser cooling project, new technologies



C. Smorra et al., EPJ-Special Topics, The BASE Experiment, (2015)



B SE STE P

TOWER

**Institutes:** RIKEN, MPIK, CERN, University of Mainz, Tokyo University, GSI Darmstadt, University of Hannover, PTB Braunschweig, ETH Zuerich

UNIVERSITÄT MAINZ



Team at CERN, running 24/7 since 2013

### Three experiments, 9 institutes, about 30 collaborators, 10 at CERN





## Properties of Cold Dark Matter

Some precision measurements and their signatures are hypothetically sensitive to signatures produced by axion like particles.

- Dark matter density has been estimated to be at a level of  $\rho_{DM}\approx 0.4 {\rm GeV/cm^3}$ , one H-atom in 2  ${\rm cm^3}$
- Dark matter RMS velocity is at  $v_{DM} \approx 300 {\rm km/s}$ .
- Non-relativistic form of matter, e.g. spin 0 bosons oscillating at their Compton frequencies

• 
$$v_c = \frac{m_a c^2}{h}$$
 with  $\Phi(t) = \frac{\sqrt{2\rho_{DM}}}{m_{\Phi}} \cos 2\pi v_c t$ 

• Mass range  $10^{-21} eV < m_a < 1 eV$ 



**B**SE

<u>STE</u> p



### Axion Electrodynamics

• Lagrange density in presence of axion like particles modifies to

$$\mathcal{L}_{em,a} = \frac{1}{2} (\boldsymbol{E} \cdot \boldsymbol{E} - \boldsymbol{B} \cdot \boldsymbol{B}) - \rho_{el} \Phi + \boldsymbol{j}_{el} \cdot \boldsymbol{A} + \frac{1}{2} \left( (\partial_t a)^2 - (\nabla a)^2 \right) - \frac{1}{2} m_a^2 a^2 - g \ a \ \boldsymbol{E} \cdot \boldsymbol{B}$$

$$\nabla \cdot (\boldsymbol{E} - g \ \boldsymbol{a} \ \boldsymbol{B}) = \rho_{el}$$

 $\nabla \times (\boldsymbol{B} + g \ a \ \boldsymbol{E}) - \partial_t (\boldsymbol{E} - g \ a \ \boldsymbol{B}) = \boldsymbol{j_{el}}$ 

$$\nabla \times \boldsymbol{E} + \partial_t \boldsymbol{B} = 0$$

 $\nabla \cdot \boldsymbol{B} = 0$ 

 In vacuum, at constant magnetic field, and low mass, the modified ampere law becomes:

×в.

$$\nabla \times (\boldsymbol{B} + g \ a \ \boldsymbol{E}) - \partial_t (\boldsymbol{E} - g \ a \ \boldsymbol{B}) = \boldsymbol{j}_{eb}$$

$$\rightarrow \nabla \times \boldsymbol{B} = -(g \ \boldsymbol{B} \partial_t a)$$

• In a constant, strong magnetic field **B** the axions are sourcing an azimuthal magnetic field that can be picked up with toroidal detectors.

# In particular



 $\rho_{DM} \approx 0.4 \mathrm{GeV/cm^3}$ 

|               | Axion (wave)               | WIMP (particle)                |
|---------------|----------------------------|--------------------------------|
| Mass          | $m_a = 10^{-9} eV$         | $m_{WMP}$<br>= 100 GeV         |
| De Broglie WL | $\lambda_{dB} = 10^4 \ km$ | $\lambda_{dB} = 10^{-16} \ km$ |
| Occupancy     | $N = 10^{44}$              | $N = 10^{-36}$                 |

- Scenarios:
  - Quasi-static regime for  $\lambda_{dB} \gg R_{ex}$

• 
$$\nabla \times \boldsymbol{B} = \left( -g_{a\gamma\gamma} \boldsymbol{B} \frac{\partial a}{\partial t} \right)$$

• Cavity regime for  $\lambda_{dB} \approx R_{ex}$ 



• Radiation regime for  $\lambda_{dB} \ll R_{ex}$ 

•  $\nabla \times \boldsymbol{B} = \frac{\partial \boldsymbol{E}_r}{\partial t} + \left( -g_{a\gamma\gamma} \boldsymbol{B} \frac{\partial a}{\partial t} \right)$ 

• 
$$0 = \frac{\partial E_r}{\partial t} + \left( -g_{a\gamma\gamma} B \frac{\partial a}{\partial t} \right)$$



# Single Particle Penning Trap Detectors



In high-precision Penning trap experiments, sensitive superconducting detectors to record coherent oscillations of **SINGLE PARTICLES** are used as interfaces between particles and experimentalists.

 Usually used to measure frequencies to derive fundamental constants, such as mass ratios and magnetic moments



BSE

<u>STE</u> p

 Devices have a very high sensitivity, are operated in strong magnetic fields, have geometry that is sensitive to pickup of magnetic fields sourced by axions.

| Parameter | Value             |
|-----------|-------------------|
| Frequency | 500 kHz to 1 MHz  |
| Q value   | 10.000 to 100.000 |
| Rp        | 100 M to 1 G      |





**Penning trap:** calibrated by **single particle quantum jump** thermometry



### **Axion Searches**





### • Our tiny contribution:

- Parasitic experiment
- Not optimized for axion detection
- Volume limited
- Magnetic field limited
- Background limited
- Bandwidth limited
- Still a lab-device at a cost of a superconducting magnet and some adds that make not more than 100.000,and competes with satellites!



Cryogenic adjustable capacitance with no loss of Q developed, at 5 times higher detection sensitivity.







Already could cover one frequency octave

BSE

STE P





## Dark-Matter/Antimatter Interaction

Measure the coupling  $\mathcal{L}_{int} = -\frac{\partial a}{f_a} \bar{\psi} \gamma^{\mu} \gamma^5 \psi$  between ultralight, pseudoscalar ALP relic dark matter and  $\bar{p}$ 

Interaction

$$H_{\text{int}} = -\frac{C_{\bar{p}}a_0}{2f_a}\sin(\omega_a t)\,\vec{\sigma}_{\bar{p}}\cdot\vec{p}_a$$

between the momentum of the axion field  $\vec{p}_a$  and the antiproton spin vector  $\vec{\sigma}_{\bar{p}}$ oscillating at the axion Compton frequency  $\omega_a = m_a c^2 / \hbar$ 

$$\delta\omega_{L}^{\overline{p}}(t) \approx \frac{C_{\overline{p}}m_{a}a_{0}|\mathbf{v}_{a}|}{f_{a}}[A\cos(\Omega_{sid}t+\alpha)+B]\sin(\omega_{a}t)$$

Should cause characteristic time dependent variation in  $v_L$ , by constraining the size of this  $a-\bar{p}$  coupling limits extracted

Do we detect sidebands in g-factor resonances?



#### First constraints on antimatter/dark matter coupling





TOWE

*a*-  $\overline{p}$  coupling limits a natural bi-product of precision CPT tests

C. Smorra et al., Nature 575, 310 (2019).

## Millicharged Dark Matter

- A real quantum experiment -> observe cyclotron quantum transition rates of a single trapped proton and set limits on the scattering of MCP's.
- Benefitial ion trap features:
  - significant isolation of the ions from the environment
  - Trap vacuum is of order  $< 10^{-18}$  mbar (no background scattering)
  - low thresholds for the detection of energy deposition, down to nanoelectronvolt range.
  - ions are charged, and naturally have large cross sections for scattering with the millicharged particles







## Continuous Stern Gerlach Effect and Heating Rates



Energy discrimination via strong magnetic bottles. Most sensitive experiments in this sector are proton/antiproton spin state detection experiments

### Magnetostatic potential

$$\Phi_M = -(\overrightarrow{\mu_p} \cdot \vec{B})$$

#### **Magnetic Bottle:**

 $B_z = B_0 + B_2 \left( z^2 - \frac{\rho^2}{2} \right)$ 

Axial frequency becomes a function of the radial eigenstate:

$$\Delta \nu_{z} = \frac{h\nu_{+}}{4\pi^{2}m_{p}\nu_{z}} \cdot \frac{B_{2}}{B_{0}} \cdot \left( \left( n_{+} + \frac{1}{2} \right) + \frac{\nu_{-}}{\nu_{+}} \cdot \left( n_{-} + \frac{1}{2} \right) + \frac{g}{2}m_{s} \right)$$

**Interesting here:** Magnetic bottle of  $B_2 = 300000 \text{ T/m}^2$ provides and energy resolution of  $\approx 1 \text{Hz}/\mu\text{eV}$ , can measure frequencies with 16 mHz resolution (16 neV differential !!!)

Need this resolution to resolve nuclear magnetic moments in quantum non-demolition spin state detection experiments.







**Basic idea:** Calculate the scattering cross-section for MCP lacksquareand target particle, and derive the effective heating rate.

$$\frac{d\sigma}{d\Omega} = \frac{2\pi\alpha^2\epsilon^2}{\mu^2 v_{\rm rel}^4 (1 - \cos\theta)^2},$$
$$\dot{H} = \sqrt{\frac{2}{\pi}} \frac{n_Q m_Q m_{\rm ion} (T_Q - T_{\rm ion})}{(m_{\rm ion} + m_Q)^2} \frac{\sigma_0}{u_{\rm th}^3}$$

Ion traps are moveable devices, profile the height distribution of MCP experiments





• Collaboration of HHU-D, RIKEN, Max Planck Society and PTB, to develop transportable proton and antiproton traps.





#### <u>B</u>SE Direct Search Experiment for Light Dark Matter STE P with superfluid Helium as Target **DE**light Scope: Direct dark matter / nuleus scattering at the light WIMP MMC Detectors scale (sub GeV particles) He Atom He – Vacuum Interface Active Volume: Superfluid Helium Recoil Event below 20 mK Photon Superfluid He as active target level meter MMC Detectors Light target / good kinematic matching to LDM / self cleaning / low background / high impedance to vibrational noise. Radiopure and compact low background target with strong suppression of environmental effects. Sensitivity curves for DELight 10<sup>-32</sup> 10 He volume for first phase / later upscaled to 100. excluded 10 cross section $\sigma_{SI}$ (cm<sup>2</sup>) Superfluid He Detectors kg-d, 20 e Magnetic Micro Calorimeters 1 kg-yr, 10 e\ 10 SuperCDM 10 $10^{-47}$ DARWIN 10<sup>-50</sup>, $10^{-2}$ $10^{2}$ 10 10 DM mass $m_{\rm DM}$ (GeV)

٠

## Clocks and other Spectroscopic Experiments



- Search for ultralight scalar dark matter (DM) with dilatonic interactions.
- Couplings can arise for the dilaton as well as for moduli and axion-like particles in the presence of CP violation.
- Ultralight dilaton DM acts as a background field that can cause tiny but coherent oscillations in Standard Model parameters such as the finestructure constant and the proton-electron mass ratio.
- These minute variations can be detected through precise frequency comparisons of atomic clocks. Our experiment extends current searches for drifts in fundamental constants to the well-motivated high-frequency regime.

R. Oswald et al. PRL 129, 031302 (2022)O. Tretiak et al. PRL 129, 031301 (2022)X. Zhang et al. arXiv:2212.04413v1



### Search for light bosonic dark matter in atomic clock comparisons

B SE STE P

- Search for oscillations in measurements of optical frequency ratios: v(<sup>171</sup>Yb<sup>+</sup>E3)/v(<sup>171</sup>Yb<sup>+</sup>E2) (best long term stability) and v(<sup>171</sup>Yb<sup>+</sup>E3)/v(<sup>87</sup>Sr) (higher short term stability)
- Hypothetical coupling of ultralight dark matter with photons leads to an oscillation in the value of the fine structure constant [1]:

 $\alpha(t) \approx \alpha \left(1 + d_e \phi_0 \cos(\omega t + \delta)\right)$ 

• Improved limits on the coupling constant  $d_e$ 





A. Arvanitaki et al., PRD 91, 015015 (2015)
[Dy/Dy] K. Van Tilburg et al., PRL 115, 011802 (2015)
[Rb/Cs] A. Hees et al., PRL 117, 061301 (2016)
[Sr/Si cav] C. J. Kennedy et al., PRL 125, 201302 (2020)
[BACON] Nature 564, 564 (2021)
Boulder –Network of clocks at NIST-JILA

This work: arXiv:2301.03433 arXiv:2301.10784





• Presented some recent ideas and developments that emerged from precision experiments taylored to measuring fundamental constants at the low energy frontier.



- Some methods interesting for detectors such as IAXO (MMC's and Superconducting resonators).
- Complementary methods to particle physics using very different detection approaches, such as ultra low-noise traps.
- Consortia partly organized within C-TCFS partly within CDS (ECHO experiment etc.)
- Perspective to form new consortia to produce productive synergies to set limits at even higher resolution.





Coupling

•

- DM may consist of light bosons. These form a classical field  $\Phi$ , which coherently oscillates at their Compton frequency
- $\Phi$  may have scalar interactions with the SM fields
- The fundamental constants (FC) may be expectation values of SM fields

The coupling of  $\Phi$  to SM fields may lead to oscillating fundamental constants

 $f_C = m_{\Phi} c^2 / h$ 

$$\Phi(t) = \frac{\sqrt{2\rho_{DM}}}{m_{\Phi}} \cos 2\pi f_C t$$

Mass of fermionsFine-structure constantStrong-coupling constant $m_f(\phi) = m_f \left[ 1 + d_{m_f} \frac{\phi}{M_{\rm Pl}} \right],$  $\alpha(\phi) \simeq \alpha \left[ 1 - d_{\alpha} \alpha \frac{\phi}{M_{\rm Pl}} \right],$  $\alpha_s(\phi) \simeq \alpha_s \left[ 1 - \frac{2d_g \beta(g_s)}{g_s} \frac{\phi}{M_{\rm Pl}} \right]$ 

Mass of a nucleus  $\frac{\delta m_N}{m_N} = 0.873 \frac{\Delta \Lambda_{\text{QCD}}}{\Lambda_{\text{QCD}}} + 0.084 \frac{\Delta \hat{m}}{\hat{m}} + 0.043 \frac{\Delta m_s}{m_s} \quad \hat{m} \; \hat{m} \equiv (m_u + m_d)/2$ These FCs oscillate as  $d_{\chi} \; \frac{\phi(t)}{M_{\text{Pl}}}$ 

How to look for oscillations in the 'constants'?

- Compare the frequency of systems which have different sensitivities to the FCs:
- Measure  $f_a(t)/f_b(t)$  over long time intervals and perform search for weak nearmonofrequent signals.