
Introduction to FORM

Ben Ruijl
July 17 - 19, 2023

Ruijl Research

1 / 12

A modern look at FORM

The bad parts of FORM I

• Counterintuitive control flow
• Text-based preprocessor is used for logic
• Hard to act at the expression level due to implicit loop over
terms

1 #do i=1,5
2 .sort
3 #do j=1,`i'
4 L F`j'`i' = x`j'+x^2;
5 #write "test2"
6 #enddo
7 Print "%t";
8 #write "test3"
9 #enddo

2 / 12

The bad parts of FORM II

• No namespaces
• Term length limitations (MaxTermSize and company)
• Lack of data structures, hashmaps etc have to be emulated
• Often workarounds required that one ``needs to know''
• No native factorisation: (x+ 1)(x+ 2) will be expanded
• Bugs that will never be fixed
• IO to other languages is not great
• Not possible to use as a library

3 / 12

The bad parts of FORM III

• Code written when compilers and system allocators could not be
trusted

• Mixing of logic and expression representation
• Pointer and offset hacks that are no longer needed?

4 / 12

Symbolica

• Symbolica is a new computer algebra system
• Focus on flexibility and ease of use in existing projects
• Should be easy to pass data to and from FORM, Mathematica, etc.
• Open development on Zulip and Github
• Blog posts and documentation on https://symbolica.io

• Community supported

5 / 12

https://symbolica.io

Pattern matching I

• FORM pattern matcher has shortcomings and inconsistencies
• id p1?.p2?*f(p1?.p2?) = 1; may not match
• id f(?a,f(?b,?a,?c),?d) = f(?a,f(?b,?c),?d); may not match
• Not possible to match subset of factors or summands with ?a

• id f(x?)*x? = 1; does not match to x*y*f(x*y) even though it
matches x*y in the function argument!

• Iterate through all matches without replacement (Mathemetica
cannot do this either)

• Should be like regex in Python: separate matching and
replacement

• Should match at any level

6 / 12

Pattern matching II

• Internally there is only one wildcard type, x_, that can match any
subexpression

• id x_ = 1 applied to x*y*z gives 1

• id x_*y_ = f(x_,y_) applied to x*y*z gives all bipartitions
• id x = 5 applied to f(x) gives f(5)

Matching z*x_*y_*f(z_,x_,w_) to x*y*z*w*f(x,y,x*y,z) gives:

x_ = y, y_ = w, z_ = x, w_ = (x*y, z)
x_ = y, y_ = x * w, z_ = x, w_ = (x*y, z)
x_ = x * y, y_ = w, z_ = (x, y), w_ = z

7 / 12

Pattern matching II

• Internally there is only one wildcard type, x_, that can match any
subexpression

• id x_ = 1 applied to x*y*z gives 1

• id x_*y_ = f(x_,y_) applied to x*y*z gives all bipartitions
• id x = 5 applied to f(x) gives f(5)

Matching z*x_*y_*f(z_,x_,w_) to x*y*z*w*f(x,y,x*y,z) gives:

x_ = y, y_ = w, z_ = x, w_ = (x*y, z)
x_ = y, y_ = x * w, z_ = x, w_ = (x*y, z)
x_ = x * y, y_ = w, z_ = (x, y), w_ = z

7 / 12

Python API

• Python API is easy to install: pip install symbolica

• Language features such as dict provide new ways to code

1 from symbolica import Expression
2

3 # create a Symbolica expression
4 x, y, w1_, w2_ = Expression.vars('x','y','w1_','w2_')
5 f = Expression.fun('f')
6 e = f(3, x)*y**2 + 5 + Expression.parse('x^2+6')
7

8 # replace f(w1_,w2_) with f(w-1,w2^2) in e
9 # where w1_>=0 and w2_ is a variable

10 r = e.replace_all(f(w1_,w2_), f(w1_ - 1, w2_**2),
11 (w1_ >= 1) & w2_.is_var())
12 print('Replaced:', r)

8 / 12

Python API II

• Symbolica's polynomial arithmetic is often much faster than
competitors'

• Work on integration into FIRE and KIRA underway

1 a = parse('(1+3*x1+5*x2+7*x3+9*x4+11*x5+13*x6+15*x7)^7-1')
2 b = parse('(1-3*x1-5*x2-7*x3+9*x4-11*x5-13*x6+15*x7)^7+1')
3 g = parse('(1+3*x1+5*x2+7*x3+9*x4+11*x5+13*x6-15*x7)^7+3')
4 ag = a * g
5 bg = b * g
6 ag.gcd(bg)

Optimizer Time
Fermat 1241
FORM 82
Mathematica 84
Symbolica 4.4

9 / 12

Python API II

• Symbolica's polynomial arithmetic is often much faster than
competitors'

• Work on integration into FIRE and KIRA underway

1 a = parse('(1+3*x1+5*x2+7*x3+9*x4+11*x5+13*x6+15*x7)^7-1')
2 b = parse('(1-3*x1-5*x2-7*x3+9*x4-11*x5-13*x6+15*x7)^7+1')
3 g = parse('(1+3*x1+5*x2+7*x3+9*x4+11*x5+13*x6-15*x7)^7+3')
4 ag = a * g
5 bg = b * g
6 ag.gcd(bg)

Optimizer Time
Fermat 1241
FORM 82
Mathematica 84
Symbolica 4.4

9 / 12

Preprocessor

• Python is the preprocessor!
• Example trace algorithm in FORM vs Symbolica:

1 #N = 10
2 S p1,...,p`N';
3 CF f, d(s);
4

5 L F = f(p1,...,p`N');
6

7 #do l = `N',1,-1
8 #if `l' % 2 == 1
9 id f(p1?,...,p`l'?) = 0;
10 #else
11 id f(p1?,...,p`l'?) = sum_(k,1,`l',(-1)^(k+1) *
12 d_(p1,p`k')*f(p2,...,p{`k'-1},p{`k'+1},...,p`l'));
13 #endif
14 #enddo
15 id f = 4;

10 / 12

Preprocessor

• Python is the preprocessor!
• Example trace algorithm in FORM vs Symbolica:

1 from symbolica import Expression
2 N = 10
3 p = Expression.vars(*['p' + str(i + 1) for i in range(N)])
4 p_ = Expression.vars(*['p' + str(i + 1) + '_' for i in range(N)])
5 f = Expression.fun('f')
6 d = Expression.fun('d', is_symmetric=True)
7

8 e = f(*p[:5]) # = f(p1,p2,p3,p4,p5)
9

10 for l in range(N,1,-1):
11 if l % 2 == 1:
12 e = e.replace_all(f(*p_[:l]), 0)
13 else:
14 e = e.replace_all(f(*p_[:l]), sum((-1)**(k+1) *
15 d(p_[0],p_[k]) * f(*p_[1:k], *p_[k+1:l])
16 for k in range(1,l))).expand()
17 e = e.replace_all(f(), 4)
18 print(e)

10 / 12

Computational graph

• Operations per term (like in FORM) can be executed with a map:

1 from symbolica import Expression, Transformer
2 x, x_ = Expression.vars('x', 'x_')
3 e = (1+x)**2
4 r = e.map(Transformer().expand().replace_all(x_**2, 6))
5 print(r)

11 / 12

The future of Symbolica

• Goal: community funding through university licenses
• Funding will be used for FORM maintenance as well
• Let me know if you need certain features!

Join development on:

• https://symbolica.io

• https:/reform.zulipchat.com

• https://github.com/benruijl/symbolica

12 / 12

https://symbolica.io
https:/reform.zulipchat.com
https://github.com/benruijl/symbolica

	A modern look at form

