Miinchen

-
https://feynarts.de/lectures/sym.pdf )
https://feynarts.de/lectures/sym.tar.gz B

H

H

H

T. Hahn, Symbolic Programming by Example —p.1



Abbreviationing
Easy in Mathematica, new in FORM.

e Simplification of Color Structures
Different approaches.

e Calculation of a Fermion Trace
Built-in in FORM, complicated in Mathematica.

e Tensor Reduction
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e Herbert Pietschmann
Formulae and Results in Weak Interactions
Springer (Austria) 2nd ed., 1983.

e Andrei Grozin
Using REDUCE in High-Energy Physics
Cambridge University Press, 1997.
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antisymmetric object, can be written with the =-tensor:

n
det A = Z Eivin..in Ai1Ai2 - Ain

il,...,inzl

In practice, the =-tensor is usually contracted, e.g. with vectors.
We will adopt the following notation to avoid dummuy indices:

5uupopuqyrp30 — 5(]77 q,T, 5) :
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(* otherwise sort the arguments into canonical order: *)

Epslargs__] := Signature[{args}] Eps@@ Sort[{args}] /;
'0rderedQ[{args}]
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whereas if p; + p2 = p3 + p4, we could have instead

1
d= 5——.
p4-|-m

In Mathematica: justdod /.pl + p2 - p3 -> pd.
Problem: FORM cannot replace sums.
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shortest expression (in FORM)?
Solution: add the number of terms of each argument, i.e.

{xaya Z} — {33, y7 Zanfva nya TLZ} .

Then sort n,, n,, n,, but when exchanging », and n,,
exchange also a and b:

symm ‘foo’ (4,1) (5,2) (6,3);
This unconventional sort statement is rather typical for FORM.
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* order according to the nterms
symm ‘foo’ (4,1) (5,2) (6,3);

* choose shortest argument
id ‘foo’([x]?, 7a) = ‘foo’([x]);

#endprocedure
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e essential function here is Unique wi
are introduced. For example,

Unique["test"]

generates e.g. the symbol test1, which is guaranteed not to
be in use so far.

which new symbols

The Module function which implements lexical scoping in fact
uses Unique to rename the symbols internally because
Mathematica can really do dynamical scoping only.
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AbbrList[] := Cases[DownValues[abbr],
_[_[_[£f_11, s_Symbol]l -> s -> f]

(x restore full expression *) -
Restorel[expr_] := expr /. AbbrList[] -
O

O

O

O
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toPolynomial onlyfunctions acc;

.sort

* print abbreviations & abbreviated expr -
=

#write "JX"

print +s; .
u
N
u
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Natural Repres

~ T =SUNT [a,i, ]

~ TETE, = SUNTSumli,j,k, (]

Adjoint Repres

~ f®¢ = SUNF[a,b,c]

b d

~ fabz fred — SUNF [a,b,c,d]
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e SUNT[a,b, . . ,’L,]] — (TaTb)?,]
e SUNT[a,b, .. .,0,0] :Tr(TaTb...)

This notation again avoids unnecessary dummy indices.
(Mainly namespace problem.)

For purposes such as the “large-/V. limit” people like to use
SU(N) rather than an explicit SU(3).
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Dirac spinors, but can be generalized to any
finite-dimensional matrix space [hep-ph/0412245].

For SU(N) (color) reordering, we need

1 1
TiThe = 5 (57:6%' - N%%e) -
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e expect SUNT with indices of
external particles to remain.

For a Squared Amplitude: e use the Fierz identity to get rid
----------------- . of all SUNT objects,

1 : 1.
>mm<>mm< e expect SUNT to vanish, color
M ONS M factors (numbers) only.

For “hand” calculations, a pictorial version of this algorithm
exists in the literature. EEEN
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repeat;
once SUNT(?a, [al?, [bl?7, [il?, [j1?) =
SUNT(?a, [al, [i], DUMMY) * SUNT([b], DUMMY, [jI1);
sum DUMMY ;
endrepeat;

* apply the Fierz identity

id SUNT([al?, [il?, [jl?) * SUNT([al?, [kl?, [1]7?) =
1/2 » SUNT([i], [1]) = SUNT([jl, [k]) -
1/2/(*SUNN’) * SUNT([i], [jl) * SUNT([k], [1]);
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b) Contraction on the same chain:

(A|T®|B| T |C) = % (<A|C> Tr B — % (Al B |0>) | :
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—_—_——) - —_——)

(sunT[t1, t4, i, 1] sunT[tB t2 k, jl -
sunT[t1, t2, i, j] sunT[t3, t4, k, 1]1/SUNN)/2

(* introduce dummy indices for the traces *) -
sunTracela__] := sunT[a, #, #]&[ Unique["col"] ] N
|

n

m

m
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+ Guo Tr%/Vp T

This algorithm is recursive in nature, and we are ultimately
left with

Trl1=14.

(Note that this 4 is not the space-time dimension, but the
dimension of spinor space.)
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Such tensorial integrals are rather unwieldy in practice,
therefore they are reduced to linear combinations of
Lorentz-covariant tensors, e.g.

B, (p) = Boo(p) guv + B11(p) pupy -

It is the coefficient functions By, and B;; which are

implemented in a library like LoopTools.
H B BN
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The next step is to take out g,,.’s in all possible ways. We do
this in form of a sum:

n
_ ?
N,u1.--,un — Z 7'('(0) Z Guivs " " Gui v N,LL1...,Ll,n\I/1...V7;
i=0,24,... all {v1,...,v;}

e{p1,. pin}

The 7(0)" keeps track of the indices of the tensor coefficients,
i.e. it later provides the two zeros for every g, in the index,
as in Doo19.
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The temporary function = keeps its argument, the ‘tagged’
momentum p, separate from the rest of the amplitude.

Now add the indices of V,, ., to the momentum in 7:

7(p) Nyopin = P+ D, -

Finally, collect all ©’s into the tensor-coefficient index.
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Coi(MOM([p1]), MOM([p2] - [p1l), MOM([p2]), 7a);

* expand momentum
repeat id TMP([p1]?) * NUM([mul?, ?a) =
d_([p1], [mul) * NUM(7a) * TMP([p1l);

* collect the indices
chainin pave;

T. Hahn, Symbolic Programming by Example —p.24



tens[i_, _]J[] := C0@ Sort[Flatten[i]]

FindTensors[mu_, p_] :=

Block[ {tenslist},
tenslist = tens[{}, MapIndexed[List, pl]@Q mu;
Collect[Plus@@ Flatten[tenslist], _C]

]
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e Nontrivial renormalization.
Software design so far:
e Mostly ‘monolithic’ (one package does everything).

e Often controlled by parameter cards, not easy to use
beyond intended purpose.

e May want to/must use other packages.
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in gaugeless approximation at p~ = 0 at O(«;).
@ 1L diagrams with insertions of 1L counterterms.
@ 2L counterterms for @,

@ 2L tadpoles T(2), Tl(f), Tf) at O(a?) appearing in @,
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O—glmod < MSSMCT.mod

model file preparation simplification
SIS [ -code <— 6-comb <— < FormCalc
code generation combination of results calculation of =
renorm. constants
m
|
|
|
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arg?2 = 0 for virtua lagrams,
1 for IL diagrams with IL counterterms.

o Inputs/outputs defined in first few lines, e.g.
in=m/$1/2-prep.$2
out=m/$1/3-calc.$2

e Symbolic output + log files go to ‘m’ subdirectory.
Log file = Output file + .1og.gz

e Fortran code goes to ‘f’ subdirectory.
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M, M3

Must set m; = 0 so that O(a?) corrections form
supersymmetric and gauge-invariant subset.

Most efficient to modify Feynman rules (not ®, though):
e Load MSSMCT.mod model file.

e Modify couplings, remove zero ones.
e Write out MSSMCTgl.mod model file.
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sel[O][S[_] -> S[_ 1] = { ; ' 2 1 w 2 1 'c 2

t[3] && htb[6], ; ; ;
t[3] && tb[6],

5

t[3] && tb[6], Sy A 8
t(3] &k t[4) 8% heb[S], A [ 4 e o)
t[3] && htb[516], S E L m
t[3] && htb[5], b " b
t[B] && t[5], 4 5 : /g\ |
t[5] && ht([314], NG U @ ik s ] =
t[31415] && ht[3|415] 3o 1 i kgj u

T7 T8 T =
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11Y11 21V91 — 1, 11Y 19 21U99 — U,
k k k >k
U1oU{y + UxUsy =1, U2U7; + UxoUsy = 0.

Problem: Simplify will rarely arrange the U’s in just the way
that these rules can be applied directly.

Solution: Introduce auxiliary symbols which immediately
deliver the r.h.s. once Simplify considers the Lh.s., i.e.
increase the ‘incentive’ for Simplify to use the r.h.s.

But: Upvalues work only one level deep.
H B BN

T. Hahn, Symbolic Programming by Example — p.34




and formulate unitarity for the UCSt:

UCst [2,1]
UCst [2,2]

UCSf[1,2];
UCSf[1,1];

UCSt [3,2] = -UCSE[3,1];
UCSfC[3,2] = -UCSfC[3,1];
Ucsf[2,3] = -UCSf[1,3];
UCsfC[2,3] = -UCSfC[1,3];
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e Introduce DiagMark [1n;] where m; = masses in loop
in FeynArts output.

o Few simplifications can be made between parts with
different DiagMark = Can apply simplification as

Collect[amp, _DiagMark, simpfunc]
e Much faster.
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e Expand in ¢, collect powers for easier handling later, e.g.

{|dM£f1[3,3] -> RC[-1, dMf1[-1,3,3]] +

RC[0, dMf1[0,3,3]],
{dMf1[-1,3,3] —> ... ,T actual expressions for e-coeffs
dMf1[0,3,3] -> ...} |}

- expansion
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e Perform final simplification.
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e Total final code size: 350 kBuytes.

More details in arXiv:1508.00562.
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https://feynarts.de/lectures/sym.pdf
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