
Numeric Programming Examples

Thomas Hahn

Max-Planck-Institut für Physik
München

https://feynarts.de/lectures/num.pdf

https://feynarts.de/lectures/num.tar.gz

T. Hahn, Numeric Programming Examples – p.1

Topics

• Mixing Fortran and C

• MathLink Programming

• Floating-point issues

• Alignment and Caching

• “Find the Mistake” Quiz

T. Hahn, Numeric Programming Examples – p.2

Mixing Fortran and C

Why Fortran? Why C/C++?

• Around for longer than many modern languages:
Fortran 1957, C 1972
Perl 1987, Python 1991, Java 1995, Ruby 1995

• Both widely used, e.g. C in the Linux Kernel.

• Good and free compilers available.

• Being the language of Unix, C is usually the lowest
common denominator, i.e. has fewest linking issues.

• Object orientation through Fortran 90/2003, C++.
(Introduces name mangling issues, though.)

T. Hahn, Numeric Programming Examples – p.3

Mixing Fortran and C

• Most Fortran compilers add an underscore to all symbols.

• Fortran passes all arguments by reference.

• Avoid calling functions (use subroutines) as handling of
the return value is compiler dependent.

• ‘Strings’ are character arrays in Fortran and not
null-terminated. For every character array the length is
passed as an invisible int at the end of the argument list.

• Common blocks correspond to global structs, e.g.

double precision a, b

common /abc/ a, b
↔

struct {

double a, b;

} abc_;

• Fortran’s (and C99’s) double complex maps onto
struct { double re, im; }.

T. Hahn, Numeric Programming Examples – p.4

MathLink programming

MathLink is Mathematica’s API to interface with C and C++.
J/Link offers similar functionality for Java.

A MathLink program consists of three parts:

a) Declaration Section

:Begin:

:Function: a0

:Pattern: A0[m_, opt___Rule]

:Arguments: {N[m], N[Delta /. {opt} /. Options[A0]],

N[Mudim /. {opt} /. Options[A0]]}

:ArgumentTypes: {Real, Real, Real}

:ReturnType: Real

:End:

:Evaluate: Options[A0] = {Delta -> 0, Mudim -> 1}

T. Hahn, Numeric Programming Examples – p.5

MathLink programming

b) C code implementing the exported functions

#include "mathlink.h"

static double a0(const double m,

const double delta, const double mudim) {

return m*(1 - log(m/mudim) + delta);

}

T. Hahn, Numeric Programming Examples – p.6

MathLink programming

c) Boilerplate main function

int main(int argc, char **argv) {

return MLMain(argc, argv);

}

Compile with mcc instead of cc.
Load in Mathematica with Install["program"].

For even more details see arXiv:1107.4379.

T. Hahn, Numeric Programming Examples – p.7

Floating-point Representation

Floating-point numbers are these days always represented
internally according to IEEE 754:

s exp mantissa

• s = sign bit,

• exp = (biased) exponent,

• mantissa = (normalized) mantissa, i.e. implicit MSB = 1.

Special values exponent mantissa

Zero 0 0

Denormalized numbers 0 non-zero

Infinities max 0

NaNs max non-zero

Bits exponent mantissa

Single precision 8 23

Double precision 11 52

T. Hahn, Numeric Programming Examples – p.8

Primitive Numerical Optimizations

About the only operation that can seriously cost precision in
floating-point arithmetic is subtraction of two similar numbers,

a− b, |a− b| ≪ |a|+ |b| .

b

s exp mantissa

a

l l l lsame different

︸ ︷︷ ︸

precision of result

T. Hahn, Numeric Programming Examples – p.9

Floating-point Limits

IEEE 754 codifies the collected experience with many
floating-point implementations over several decades.

Double precision is sufficient to measure the
thickness d of a pencil to two digits by subtracting
the distance ℓ′ = earth+pencil–sun from the distance
ℓ = earth–sun:

ℓ′
ℓ

d = ℓ− ℓ′

T. Hahn, Numeric Programming Examples – p.10

Primitive Numerical Optimizations

Numerical example for loss of precision:

∆p = p0 − |~p | =
√

p2 +m2 − p

p m ∆pdouble precision ∆pexact

103 1 .499999875046342 · 10−3 .499999875000062 · 10−3

106 1 .500003807246685 · 10−6 .499999999999875 · 10−6

109 1 0 .500000000000000 · 10−9

1012 1 0 .500000000000000 · 10−12

1015 1 0 .500000000000000 · 10−15

T. Hahn, Numeric Programming Examples – p.11

Primitive Numerical Optimizations

Always substitute a2 − b2 → (a− b)(a+ b).

a2 − b2 loses twice as many digits as (a− b)(a+ b)!

Besides: a2 − b2 = 2 mul, 1 add, (a− b)(a+ b) = 1 mul, 2 add.

Variants on this theme:

• On-shell momentum p:

p0 − p = (p0 − p)
p0 + p

p0 + p
=

m2

p0 + p

• Trigonometry in extreme forward/backward direction:

1− cosx = (1− cosx)
1 + cosx

1 + cosx
=

sin2 x

1 + cosx

• Polarization vectors:

1− ez = (1− ez)
1 + ez
1 + ez

=
e2
x
+ e2

y

1 + ez

T. Hahn, Numeric Programming Examples – p.12

Alignment

The CPU generally accesses memory in units of its data bus
width, i.e. 4 bytes at a time on a 32-bit machine, 8 bytes at a
times on a 64-bit machine.

If a variable is improperly aligned in memory, the CPU needs
an extra fetch cycle to read the item! This significantly
degrades performance.

0000 fetch cycle 1

0008 fetch cycle 2

0016

T. Hahn, Numeric Programming Examples – p.13

Alignment

Compilers generally align ‘loose’ variables on proper
boundaries. Similarly, functions like malloc return memory
addresses properly aligned for any type of data.

Some languages (e.g. C) allow padding inside structures:

struct test {

char c;

double r; };

0000 paddingc

0008 r

Some languages (e.g. Fortran) do not allow padding, thus the
programmer can construct misaligned variables:

character*1 c

double precision r

common /test/ c, r

0000 c r

0008 r

T. Hahn, Numeric Programming Examples – p.14

Cache

RAM (Random-Access Memory) is in fact not accessed
randomly. Modern CPUs have two levels of cache ‘on top’ of
the regular RAM. Cache is much faster than DRAM,
tcache : tDRAM ≈ tDRAM : tdisk.

Cache

Cache line (∼ 64 bytes)

DRAM

Accessed word

Accessing memory sequentially is typically (much) faster than
“hopping around.”

T. Hahn, Numeric Programming Examples – p.15

Matrix Storage

Due to the cache, accessing a matrix is not arbitrary.

• Fortran: column-major storage,
Matrix = array of column vectors:
A11 → A21 → A31 → . . . (first index runs fastest)

• C: row-major storage,
Matrix = array of row vectors:
A11 → A12 → A13 → . . . (last index runs fastest)

Naive:

do i = 1, n

do j = 1, n

sum = sum + A(i,j)

enddo

enddo

Better:

do j = 1, n

do i = 1, n

sum = sum + A(i,j)

enddo

enddo

T. Hahn, Numeric Programming Examples – p.16

Parallelization

In HEP we are (typically) blessed with highly parallelizable
problems. For example, computing a cross-section for different
point in phase or parameter space.

Such computations are “embarrassingly parallel” – each point
can be calculated independently.

How to distribute the iterations automatically without
rewriting your program?

Solution: Introduce a serial number

T. Hahn, Numeric Programming Examples – p.17

Unraveling Serial Programs

subroutine Computation(range)

integer serial
serial = 0

parameter loop
...

serial = serial + 1
if(serial /∈ range) goto 1

(do the computation)

1 enddo
end

Make range
e.g.
= i, N accessible from the command line

(getarg) or environment variable (getenv).

Distribution on N machines is now simple:

• Send serial numbers 1, N + 1, 2N + 1, . . . to machine 1,

• Send serial numbers 2, N + 2, 2N + 2, . . . to machine 2,
etc.

T. Hahn, Numeric Programming Examples – p.18

Simple Parallelization

Simple parallelization using only OS functions can be done
using fork and wait.

fork starts new process, returns 0 to child, child-pid to parent.

Unlike pthread_create, fork creates a completely
independent process image. Works even in Fortran.

Linux uses copy-on-write, i.e. memory pages are kept common
until either parent or child writes on them.

No simple way to communicate back results to parent.

T. Hahn, Numeric Programming Examples – p.19

Find the Mistake

Can you spot what is wrong, undesirable, or potentially
dangerous with the following code snippet?

inline double KineticEnergy(const double m,

const double v) {

return 1/2*m*v*v;

}

T. Hahn, Numeric Programming Examples – p.20

Find the Mistake

Can you spot what is wrong, undesirable, or potentially
dangerous with the following code snippet?

program my_huge_program

double precision radius

print *, "Please enter the radius:"

read(*,*) radius

radius = radius*2*pi

...

T. Hahn, Numeric Programming Examples – p.21

Find the Mistake

Can you spot what is wrong, undesirable, or potentially
dangerous with the following code snippet?

subroutine foo(i)

integer i

i = 2*i + 1

end

...

call foo(4711)

T. Hahn, Numeric Programming Examples – p.22

Find the Mistake

Can you spot what is wrong, undesirable, or potentially
dangerous with the following code snippet?

#define map(a) 1-a

#define scale(x) 3*x+1

scaled_x = map(scale(x))

T. Hahn, Numeric Programming Examples – p.23

Find the Mistake

Can you spot what is wrong, undesirable, or potentially
dangerous with the following code snippet?

block data my_data_ini

double precision half, quarter

common /constants/ half, quarter

data half /1/2D0/

data quarter /1/4D0/

end

T. Hahn, Numeric Programming Examples – p.24

Find the Mistake

Can you spot what is wrong, undesirable, or potentially
dangerous with the following code snippet?

double precision x

character*1 id

double complex phase

common /mydata/ x, id, phase

T. Hahn, Numeric Programming Examples – p.25

Find the Mistake

Can you spot what is wrong, undesirable, or potentially
dangerous with the following code snippet?

subroutine foo(x)

double precision x

print *, x

end

...

call foo(7.2)

T. Hahn, Numeric Programming Examples – p.26

Find the Mistake

Can you spot what is wrong, undesirable, or potentially
dangerous with the following code snippet?

program compute_sum

double precision x(5), sum

integer i

data x /1D40, 4.71D0, -2.5D40, 200D-2, 1.5D40/

sum = 0

do i = 1, 5

sum = sum + x(i)

enddo

print *, sum

end

T. Hahn, Numeric Programming Examples – p.27

Exercise

Find an implementation of an extended-precision data type
for real numbers using two double-precision numbers, as in:

high part (real*8) low part (real*8)

(This is of course not quite the same as quadruple precision.)

Task: program the addition and multiplication operations for
such a kind of extended-precision number. The output of each
operation should be normalized in the sense that the high part
represents the full result to the extent of double precision, e.g.
(10, 10) becomes (20, 0) when normalized.

https://feynarts.de/lectures/num.pdf

https://feynarts.de/lectures/num.tar.gz

T. Hahn, Numeric Programming Examples – p.28

	Topics
	Mixing Fortran and C
	Mixing Fortran and C
	MathLink programming
	MathLink programming
	MathLink programming
	Floating-point Representation
	Primitive Numerical Optimizations
	Floating-point Limits
	Primitive Numerical Optimizations
	Primitive Numerical Optimizations
	Alignment
	Alignment
	Cache
	Matrix Storage
	Parallelization
	Unraveling Serial Programs
	Simple Parallelization
	Find the Mistake
	Find the Mistake
	Find the Mistake
	Find the Mistake
	Find the Mistake
	Find the Mistake
	Find the Mistake
	Find the Mistake
	Exercise

