
1

Calculating loop amplitudes
on a computer
Do-It-Yourself guide

Vitaly Magerya
Institut für Theoretische Physik,
Karlsruher Institut für Technologie
(ITP KIT)

Hamburg, CAPP 2023

mailto:vitalii.maheria@kit.edu
https://www.kit.edu/
https://p3h.particle.kit.edu/

2

Goals

Goal of the lecture:

* choose a multi-loop amplitude,

* calculate it completely on a computer (analytically and numerically),

* use our own code (in MATHEMATICA, FORM, with other useful software).

* * *

Alternatives to writing own code (not covered here):

* using existing libraries for one- and multi-loop amplitudes, such as
FEYNCALC, FEYNARTS+FORMCALC, ALIBRARY, Q2E, HEPLIB, etc;

* using aumated library generators for 1-loop amplitudes, such as
GOSAM, NJET, OPENLOOPS, RECOLA, etc;

* using complete automated packages for event generation, such as
MADGRAPH, HELAC, WHIZARD, etc.

https://feyncalc.github.io/
https://feynarts.de/
https://feynarts.de/formcalc/
https://github.com/magv/alibrary
http://sfb-tr9.ttp.kit.edu/software/html/q2eexp.html
https://heplib.github.io/
https://github.com/gudrunhe/gosam
https://bitbucket.org/njet/njet/
https://openloops.hepforge.org/
https://recola.gitlab.io/recola2/
https://launchpad.net/mg5amcnlo
https://arxiv.org/abs/1110.1499
https://whizard.hepforge.org/

3

What will we calculate?

𝑒−

𝑒+

⋯

Partons Hadrons

Hard reaction Hadronization

⋯
𝜋±
𝐾±

Target quantity: the total cross-section of 𝑒+𝑒− annihilation to hadrons,

𝜎(𝑒+𝑒− → hadrons) = 𝜎(𝑒+𝑒− → partons) = |𝑀(𝑒+𝑒− → partons)|2

4√𝑝𝑒− ⋅𝑝𝑒+
.

Goal: calculate 𝒪 (𝛼2𝑠) corrections to it (and then 𝒪 (𝛼3𝑠) too).
Model: QCD with𝑁𝑓 massless quarks, and𝑁𝑡 massive quarks of mass𝑚𝑡.

* * *
As we’ll see this translates to calculating diagrams like

, , etc.

4

Motivation: the 𝑅 ratio

5 52. Plots of Cross Sections and Related Quantities

52.3 σ and R in e+e− Collisions
σ and R in e+e− Collisions

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

1 10 10
2

σ
[m

b
]

ω

ρ

φ

ρ′

J/ψ

ψ(2S)
Υ

Z

10
-2

10
-1

1

10

10 2

10 3

1 10 10
2

R ω

ρ

φ

ρ′

J/ψ
ψ(2S)

Υ
Z

√

s [GeV]

Figure 52.2: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− →
hadrons, s)/σ(e+e− → µ+µ−, s). σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state
radiation and electron-positron vertex loops, σ(e+e− → µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV
and statistical above 2 GeV. The curves are an educative guide: the broken one (green) is a naive quark-parton model
prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of this
Review, Eq. (9.7) or, for more details [99], Breit-Wigner parameterizations of J/ψ, ψ(2S), and Υ (nS), n = 1, 2, 3, 4
are also shown. The full list of references to the original data and the details of the R ratio extraction from them can
be found in [100]. Corresponding computer-readable data files are available at http://pdg.lbl.gov/current/xsect/.
(Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, August 2019. Corrections by P. Janot
(CERN) and M. Schmitt (Northwestern U.))

21st May, 2020 7:49pm

Figure: 𝑅 ≡ 𝜎(𝑒+𝑒− → hadrons)/𝜎leading(𝑒+𝑒− → 𝛾∗ → muons), from
Ezhela, Lugovsky, Zenin ’03, available at pdg.lbl.gov/2023/hadronic-xsections.

At the leading order 𝑅 is proportional to the number of QCD colors𝑁𝑐:

𝑅 = 𝑁𝑐
quarks

𝑒𝑞 ⇒ 𝑁𝑐 can be measured via 𝑅.

https://arxiv.org/abs/hep-ph/0312114
https://pdg.lbl.gov/2023/hadronic-xsections/

5

Calculating e+e– annihilation to hadrons
The matrix element squared of the total cross-section is

|𝑀(𝑒+𝑒− → partons)|2 =
𝑛
dPS𝑛

𝑒+

𝑒−
All

possible
diagrams

1
2

𝑛

𝛾∗

𝑞, 𝜇 ⋯
2

.

Often calculating it is easier via the optical theorem:

|𝑀|2 = 2Re
⎛
⎜⎜⎜⎜⎝
𝑒+

𝑒−
All

possible
diagrams

𝑒+

𝑒−

𝑞, 𝜇 𝑞, 𝜈

⎞
⎟⎟⎟⎟⎠ .

Further, we can factorize this into leptonic and hadronic tensors (𝐿 and𝐻):

|𝑀|2 = − 2𝑞4 Re𝐿𝜇𝜈𝐻𝜇𝜈 , 𝑞 ≡ 𝑝𝑒− + 𝑝𝑒+ ,

𝐿𝜇𝜈 ≡
𝑒+

𝑒−

𝑒+

𝑒−

𝑞, 𝜇𝑞, 𝜈
× , 𝐻𝜇𝜈 ≡

All
possible
diagrams𝑞, 𝜇 𝑞, 𝜈

.

All the loop integration and 𝛼𝑠 corrections are in𝐻𝜇𝜈, and 𝐿𝜇𝜈 is just

𝐿𝜇𝜈 = 4𝜋𝛼 𝑝𝜇𝑒−𝑝𝜈𝑒+ + 𝑝𝜈𝑒−𝑝
𝜇
𝑒+ − 𝑔𝜇𝜈 𝑝𝑒− ⋅𝑝𝑒+ .

6

Tensor structures and projectors
Because𝐻𝜇𝜈(𝑞) is a Lorentz-covariant tensor, it can only be composed from
𝑔𝜇𝜈, 𝑞𝜇, and 𝑞𝜈. Its general structure then must be:

𝐻𝜇𝜈(𝑞) = 𝑞𝜇𝑞𝜈 𝐹1(𝑞) + 𝑔𝜇𝜈 𝐹2(𝑞).
This structure can be further restricted via Ward identities:

𝑞𝜇𝐻𝜇𝜈 = 𝐻𝜇𝜈𝑞𝜈 = 0 ⇒ 𝑞2𝐹1 + 𝐹2 = 0,

𝐻𝜇𝜈(𝑞) = 𝐹1(𝑞) 𝑞𝜇𝑞𝜈 − 𝑔𝜇𝜈 𝑞2 .
With this form of𝐻𝜇𝜈 the total matrix element squared becomes

|𝑀|2 = − 2𝑞4 Re𝐿𝜇𝜈𝐻𝜇𝜈 = 4𝜋𝛼(2 − 𝑑)Re𝐹1(𝑞) .

To get 𝐹1 from𝐻𝜇𝜈 we must invert the relation by constructing a projector:

𝐹1 = 𝑃𝜇𝜈𝐻𝜇𝜈, 𝑃𝜇𝜈 ≡
𝑔𝜇𝜈
2 − 𝑑

1
𝑞2 .

Calculting scalars like 𝐹1 is simpler than tensors like𝐻𝜇𝜈, and a tensor
decomposition along with projector constuction is almost always needed.

7

Calculation plan
1. Generate Feynman diagrams for the process.

* 𝐹1 = 𝑃 + 𝑃 + 𝑃 + …
* QGRAF with MATHEMATICA output.

2. Apply Feynman rules.
* 𝐹1 = ∫d𝑑𝑙1 Tr𝛾𝜇 /𝑘1𝛾𝜈 /𝑘2⋯ + …
* Custom MATHEMATICA code.

3. Resolve Dirac and color tensor summation, convert to the scalar
integral families.

* 𝐹1 = 𝑁𝑓𝐶𝑎⋯𝐼123 + …
* MATHEMATICA→ FORM→ MATHEMATICA.

4. Use IBP relations to reduce to smaller set of “master integrals”.
* 𝐹1 = 𝑁𝑓𝐶𝑎⋯+… 𝐼111 + …
* MATHEMATICA→ KIRA→ MATHEMATICA.

5. Evaluate the master integrals.
* Numerically: sector decomposition with pySECDEC.
* Analytically or semi-analytically: differential equations.

General idea: use MATHEMATICA to glue everything together.

8

Diagram generation

8

Feynman diagram generation with QGRAF

QGRAF is a widely used program for Feynman diagram generation available
at http://cfif.ist.utl.pt/~paulo/qgraf.html.
To generate diagrams with QGRAF:
1. Create a QGRAF model file with a list of fields and vertices.
See qgraf-modfile for the QCD model we’ll use.

2. Create a QGRAF style file (output template) defining the output format.
See qgraf-stylefile for the Mathematica output style we will use.

3. Create qgraf.dat, defining the incoming particles, outgoing particles,
loop count, names of the momenta, the model file, and the style file.
See qgraf.dat.example.

4. Run qgraf from the directory where qgraf.dat is.
Note: qgraf.dat name is hardcoded (can only be changed since
QGRAF 3.6.6 with some restrictions). We’ll work around this.

Demo: run qgraf manualy; run example.generate-diagrams.m to
generate the diagrams automatically; run show-diagrams.m to view them.

http://cfif.ist.utl.pt/~paulo/qgraf.html

9

QGRAF result structure
Once QGRAF has generated the list of diagrams, each diagram will have:

* A list of incoming fields (legs), and a list of outgoing fields.
* Each field has: a field name, a field index, a vertex id, momentum.

* A list of propagators.
* Each propagator has: a field name, two field indices (start and end), two
vertex indices (start and end), momentum.

* A list of vertices.
* Each vertex has: a vertex index, a list of rays.

* Each ray has: a field name, a field index, momentum.

Vertex index: 1

Vertex index: 2

Field index: 1

Field index: 2

�⃗�
−�⃗�

-1

-3

-2

-4

Notes:
* Fields and momenta are always listed as if incoming into the vertex.
* Vertices and internal legs have positive indices.
* External legs have negative indices: -1, -3, -5, ... for incoming
particles, -2, -4, -6, ... for outgoing.

10

Feynman rules

10

Notation on a computer
Feynman rules in a book:

𝑙, 𝑖1𝜇 𝜈

𝑙 − 𝑞, 𝑖2

=

d𝑑𝑙
(2𝜋)𝑑

𝑖𝑔𝑒𝑄𝑓1𝛿𝑖1𝑖2𝛿𝑓1𝑓2 Tr

⎛
⎜⎜⎜⎜⎜⎜⎝𝛾

𝜇 /𝑙 − /𝑞

𝑞 − 𝑙
2
+ 𝑖0

𝛾𝜈
/𝑙

𝑙2 + 𝑖0

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑖𝑔𝑒𝑄𝑓2𝛿𝑖2𝑖1𝛿𝑓2𝑓1 .

Feynman rules on a computer:

In[1] := One Feynman diagram, please???

Syntax::sntxf: "One Feynman diagram"
cannot be followed by ", please???".

11

MATHEMATICA notation, I
To operate on Feynman rules in MATHEMATICA, we need to choose a notation.
Any will work; we’ll use the following.
Index names:

* 𝜇𝑖, Lorentz indices, 1… 𝑑: lor[𝑖] (with 𝑖 directly from QGRAF);

* 𝑖𝑖, fundamental color indices, 1…𝑁𝑐: fun[𝑖];
* 𝑎𝑖, adjoint color indices, 1…𝑁𝑎 = 𝑁2

𝑐 − 1: adj[𝑖];
* 𝑓𝑖, light quark flavors (up, down, etc), 1…𝑁𝑓 : flv[𝑖];
* 𝑡𝑖, heavy quark flavors (e.g. top), 1…𝑁𝑡: flvt[𝑖];
* 𝑠𝑖, Dirac (spinor) indices, 1… 4: spn[𝑖].

Tensors:

* 𝑓𝑎1𝑎2𝑎3 , 𝑆𝑈(𝑁𝑐) structure constants: colorf[𝑎1,𝑎2,𝑎3];
* 𝑇𝑎𝑖1𝑖2 , 𝑆𝑈(𝑁𝑐) generators, colorT[𝑎,𝑖1,𝑖2];

* 𝛾𝜇
𝑠1𝑠2

, Dirac matrices: gammachain[gamma[𝜇],𝑠1,𝑠2];

* /𝑝𝑠1𝑠2
, Dirac slash notation: gammachain[slash[p],𝑠1,𝑠2].

12

MATHEMATICA notation, II

* Propagator denominators:

* Massless: 1
𝑝2+𝑖0 → den[p].

* Massive: 1
𝑝2−𝑚2+𝑖0 → den[p,m2].

* Momenta components: 𝑝𝜇 → momentum[p,𝜇].
* Scalar products: 𝑝 ⋅ 𝑞 → sp[p,q].
* Delta functions (metric tensors):

* Quark flavor: 𝛿𝑓1𝑓2 → deltaf[𝑓1,𝑓2].
* Heavy quark flavor: 𝛿𝑡1𝑡2 → deltaft[𝑡1,𝑡2].
* Generic: 𝛿𝑥𝑦 → delta[𝑥,𝑦].

* Quark electric charges:
* Light: 𝑄𝑓𝑖 → chargeQ[𝑓𝑖].
* Heavy: 𝑄𝑡𝑖 → chargeQt[𝑡𝑖].

Everything else (products, sums, powers, etc): the normal MATHEMATICA
expressions.

13

Mathematica notation example
𝑙, 𝑖1𝜇 𝜈

𝑙 − 𝑞, 𝑖2

=

d𝑑𝑙
(2𝜋)𝑑

𝑖𝑔𝑒𝑄𝑓1𝛿𝑖1𝑖2𝛿𝑓1𝑓2 Tr

⎛
⎜⎜⎜⎜⎜⎜⎝𝛾

𝜇 /𝑙 − /𝑞

𝑞 − 𝑙
2
+ 𝑖0

𝛾𝜈
/𝑙

𝑙2 + 𝑖0

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑖𝑔𝑒𝑄𝑓2𝛿𝑖2𝑖1𝛿𝑓2𝑓1 =

(I * ge * chargeQ[flv[1]]
* delta[fun[1], fun[2]] * deltaf[flv[1], flv[2]]
* gammachain[gamma[lor[mu]], spn[1], spn[2]]
* gammachain[slash[l - q], spn[2], spn[3]]
* den[q - l]
* gammachain[gamma[lor[nu]], spn[3], spn[4]]
* gammachain[slash[l], spn[4], spn[1]]
* den[l]
* I * ge * chargeQ[flv[2]]
* delta[fun[2], fun[1]] * deltaf[flv[2], flv[1]])

14

Feynman rules: propagators

Feynman rules for propagators:

* Quark propagator: 𝑖𝛿𝑓1𝑓2𝛿𝑖1𝑖2
 /𝑝𝑠2𝑠1
𝑝2 .

* Heavy quark propagator: 𝑖𝛿𝑡1𝑡2𝛿𝑖1𝑖2
 /𝑝+1𝑚𝑡𝑠2𝑠1
𝑝2−𝑚2 .

* Gluon propagator: −𝑖𝛿𝑎1𝑎2

⎛
⎜⎜⎜⎝
𝑔𝜇1𝜇2
𝑝2 − (𝜉 − 1) 𝑝

𝜇1𝑝𝜇2

𝑝2
2

⎞
⎟⎟⎟⎠.

* Ghost propagator: 𝑖𝛿𝑎1𝑎2
1
𝑝2 .

* Photon propagator: not needed, photons are external for𝐻𝜇𝜈.

15

Feynman rules: vertices

Feynman rules for vertices:

* Anti-quark/quark/gluon vertex: 𝑖𝑔𝑠𝛿𝑓1𝑓2𝑇
𝑎3
𝑖1𝑖2 𝛾

𝜇3
𝑠1𝑠2

.

* Anti-quark/quark/photon vertex: 𝑖𝑔𝑒𝑄𝑓1𝛿𝑓1𝑓2𝛿𝑖1𝑖2 𝛾
𝜇1

𝑠1𝑠2
.

* Anti-ghost/ghost/gluon vertex: 𝑔𝑠𝑓𝑎3𝑎2𝑎1𝑝
𝜇3
1 .

* Three-gluon vertex:

𝑔𝑠𝑓𝑎1𝑎2𝑎3 𝑔𝜇1𝜇2 𝑝1 − 𝑝2
𝜇3 + (123 → 231) + (123 → 312) .

* Four-gluon vertex:

−𝑖𝑔𝑠 𝑓𝜈𝜇1𝜇2𝑓𝜈𝜇3𝜇4 𝑔𝜇1𝜇3𝑔𝜇2𝜇4 − 𝑔𝜇1𝜇4𝑔𝜇2𝜇3 + (1342) + (1423) .

Note the fresh summation index 𝜈.
See: example.feynman-rules.m.

16

Tensor summation

16

Dirac tensor summation with FORM
FORM can expand traces of gamma matrices:

Tr 𝛾𝜇 /𝑝 = 𝛾𝜇𝑠1𝑠2
 /𝑝𝑠2𝑠1

= gammachain[gamma[lor[mu]],spn[1],spn[2]]
*gammachain[slash[p],spn[2],spn[1]]

→ gammachain[gamma[mu],slash[p],spn[1],spn[1]]
→ g_(𝑖,mu,p)

traceN 𝑖;
→ 4*p(mu)
→ 4*momentum[p,lor[mu]]

On the FORM side:
* 𝑖 can be any arbitrary (but unique) integer;
* mu must be declared as an index: index mu = d;
* p must be declared as a vector: vector p;
* p must be a single variable, not an expression (i.e. no p+q).

See: example.dirac-trace*frm, example.to-and-from-form.m.

17

Color tensor summation with COLOR.H

COLOR.H is a FORM package for generic color group (𝑆𝑈(𝑁) and beyond)
tensor summation, available at
https://www.nikhef.nl/~form/maindir/packages/color/
Usage in summary:

Tr (𝑇𝑎1𝑇𝑎1) =𝑇𝑎1𝑖1𝑖2𝑇
𝑎1
𝑖2𝑖1

= colorT[adj[1],fun[1],fun[2]]*
*colorT[adj[2],fun[2],fun[1]]

→ T(fun1,fun2,adj1)*T(fun2,fun1,adj1)
#include color.h
#call docolor

→ NA*I2R
→𝑁𝑎 𝑇𝑓

See: example.color-trace.frm.

https://www.nikhef.nl/~form/maindir/packages/color/

18

Quark flavor summation

Flavor-related factors are complicated by the dependence of charge on
flavor (𝑄𝑓). Three cases are relevant:

𝑞, 𝑓 ∼ 𝑁𝑓,

𝑞, 𝑓
𝑄𝑓

∼ ∑𝑄𝑓,

𝑞, 𝑓
𝑄𝑓

𝑄𝑓
∼ ∑𝑄2

𝑓,

and the same three cases for the heavy quarks (𝑁𝑡,∑𝑄𝑡,∑𝑄2
𝑡).

No library for this; just some FORM code that:
1. Apply each 𝛿𝑓1𝑓2 factor by renaming 𝑓1 into 𝑓2 (if 𝑓1 ≠ 𝑓2).
2. Recognize the possible remaining cases (𝑄2

𝑓𝛿𝑓𝑓 ,𝑄𝑓𝛿𝑓𝑓 , 𝛿𝑓𝑓).
See: example.flavor-trace.frm.

19

IBP reduction

19

Integration-By-Parts relations

A Feynman integral family with𝑁 denominators𝐷𝑖, 𝐿 loop momenta 𝑙𝑖, and
𝐸 external momenta 𝑝𝑖, is the set of integrals

𝐼𝜈1,𝜈2,…,𝜈𝑁
indices

≡
d𝑑𝑙1
(2𝜋)𝑑

… d𝑑𝑙𝐿
(2𝜋)𝑑

1
𝐷𝜈1
1 ⋯𝐷𝜈𝑁

𝑁
,

where
𝐷𝑖 ≡ 𝑙𝑗 ± 𝑝𝑘 ± …

2
− 𝑚2

𝑖 + 𝑖0.

The idea: shifting any 𝑙𝑘 by any vector 𝑣 should not change 𝐼:

lim
𝛼→0

𝜕
𝜕𝛼𝐼(𝑙𝑘 → 𝑙𝑘 + 𝛼𝑣) = d𝑑 𝑙1⋯d𝑑 𝑙𝐿

𝜕
𝜕𝑙𝜇𝑘

𝑣𝜇

𝐷𝜈1
1 …𝐷

𝜈𝑁
𝑁

!= 0.

These are the Integration-By-Parts (IBP) relations. [Chetyrkin, Tkachov ’81]

They hold for each 𝑘 = 1…𝐿, and any 𝑣 (out of 𝑙𝑖 and 𝑝𝑖), including 𝑣 = 𝑙𝑘.
There are 𝐿(𝐿 + 𝐸) unique relations.

https://doi.org/10.1016/0550-3213(81)90199-1

20

IBP relations example
Consider a massless triangle topology:

𝐼𝑎,𝑏,𝑐 ≡
𝑝1

𝑝2

𝑙1
𝑙 1−

𝑝 1

𝑙1 + 𝑝2

≡
d𝑑𝑙
(2𝜋)𝑑

1

𝑙2
𝑎
(𝑙 − 𝑝1)2

𝑏
(𝑙 + 𝑝2)2

𝑐 ,

with 𝑝21 = 𝑝22 = 0, and 𝑝1 ⋅𝑝2 = 𝑠/2.
Using the general IBP relation form and

𝑣𝜇 𝜕𝜕𝑙𝑘
1

(𝑘2)𝑛 = −𝑛
1

(𝑘2)𝑛+1 2𝑣
𝜇𝜕𝑘𝜈
𝜕𝑙𝜇 𝑘𝜈,

for this example we get

0 =
d𝑑𝑙
(2𝜋)𝑑

1

𝑙2
𝑎
(𝑙 − 𝑝1)2

𝑏
(𝑙 + 𝑝2)2

𝑐×

×
𝜕𝑣𝜇
𝜕𝑙𝜇 − 2𝑎

𝑣⋅𝑙
𝑙2 − 2𝑏𝑣⋅(𝑙 − 𝑝1)(𝑙 − 𝑝1)2

− 2𝑐𝑣⋅(𝑙 + 𝑝2)(𝑙 + 𝑝2)2
 .

21

IBP relations example, cont.

Next, express all scalar products with 𝑙𝑖 in terms of the denominators:

𝑙⋅𝑙 = 𝑙2,

𝑝1 ⋅𝑙 =
1
2𝑙
2 − 12(𝑙 − 𝑝1)

2,

𝑝2 ⋅𝑙 =
1
2𝑙
2 − 12(𝑙 + 𝑝2)

2.

This allows rewriting the IBP relations in terms of 𝐼𝑎,𝑏,𝑐.
Specifically, choosing 𝑣 = {𝑝1, 𝑝2, 𝑙} we get:

(𝑏−𝑎) 𝐼𝑎,𝑏,𝑐−𝑐𝑠𝐼𝑎,𝑏,𝑐+1−𝑐𝐼𝑎−1,𝑏,𝑐+1−𝑏𝐼𝑎−1,𝑏+1,𝑐+𝑐𝐼𝑎,𝑏−1,𝑐+1+𝑎𝐼𝑎+1,𝑏−1,𝑐 = 0,

(𝑎−𝑐) 𝐼𝑎,𝑏,𝑐+𝑏𝑠𝐼𝑎,𝑏+1,𝑐+𝑐𝐼𝑎−1,𝑏,𝑐+1+𝑏𝐼𝑎−1,𝑏+1,𝑐−𝑏𝐼𝑎,𝑏+1,𝑐−1−𝑎𝐼𝑎+1,𝑏,𝑐−1 = 0,

(𝑑 − 2𝑎 − 𝑏 − 𝑐) 𝐼𝑎,𝑏,𝑐 − 𝑐𝐼𝑎−1,𝑏,𝑐+1 − 𝑏𝐼𝑎−1,𝑏+1,𝑐 = 0.

22

Constructing integral families
To rewrite relations between integrals (such as IBP relations) in terms of
𝐼𝜈1…𝜈𝑁 , one must express all scalar products involving the loop momenta 𝑙𝑖,

𝑠𝑘 ≡ 𝑙𝑖 ⋅𝑙𝑗, 𝑙𝑖 ⋅𝑝𝑗 , 𝑘 = 1…𝐿 (𝐿 + 1) /2 + 𝐿𝐸,
in terms of the denominators𝐷𝑖:

𝐷𝑖 = 𝑀𝑖𝑘 𝑠𝑘 + 𝐾𝑖 ⇒ 𝑠𝑘 = 𝑀−1
𝑘𝑖
(𝐷𝑖 − 𝐾𝑖) .

This is only possible if𝑀 is invertible, which means:
1. Each IBP family must have exactly 𝐿 (𝐿 + 1) /2 + 𝐿𝐸 denominators.

* A Feynman diagram only has up to 3𝐿 + 𝐸 − 2 lines, so each family
needs (𝐿 − 1) (𝐸 − 2 + 𝐿/2) extra denominators not coming from the
diagrams. These are “irreducible numerators”, their indices are negative.

2. All𝐷𝑖 must be linearly independent when viewed as polynomials in 𝑠𝑘.
* Massive diagrams naturally have terms with dependent denominators:

𝑚1 𝑚2

∼ 1
𝑝2 − 𝑚2

1

1
𝑝2 − 𝑚2

2
.

* Partial fraction decomposition must be applied before IBP.
See: example.to-bases.frm, example.construct-basis.m.

23

Breaking up linearly dependent denominators
In the simple case:

1
𝑝2 − 𝑚2

1

1
𝑝2 − 𝑚2

2
= 1
𝑚2
1 − 𝑚2

2

1
𝑝2 − 𝑚2

1
+ 1
𝑚2
2 − 𝑚2

1

1
𝑝2 − 𝑚2

2
.

In the general case: Leinartas’ algorithm. [Leinartas ’76; Raichev ’12]

1. For each term of the form 𝐶𝐷−𝜈1
1 ⋯𝐷−𝜈𝑁

𝑁 , check if there is a linear
dependence among the denominators,𝐴𝑖𝐷𝑖 + 𝐵 = 0.

* For this, decompose𝐷𝑖 into the scalar products𝐷𝑖 = 𝑀𝑖𝑘𝑠𝑘 + 𝐾𝑖, then
all𝐴 ∈ ker𝕄⊤ and 𝐵 = −𝐴⋅�⃗� will satisfy the dependence condition.

2. If 𝐵 ≠ 0, multiply the term by a factor of

1 = − 1𝐵 ∑𝑖𝐴𝑖𝐷𝑖.

3. If 𝐵 = 0, choose one denominator𝐷𝑘 and multiply the term by

1 = − 1
𝐴𝑘𝐷𝑘

∑𝑖≠𝑘𝐴𝑖𝐷𝑖

4. Repeat until no term has linearly dependent denominators.
Newer algorithms: based on algebraic geometry, e.g. MULTIVARIATEAPART.

[Heller, von Manteuffel ’21]

http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ivm&paperid=5842&option_lang=eng
https://arxiv.org/abs/1206.4740
https://arxiv.org/abs/2101.08283

24

Lorentz Invariance Relations

𝐼𝜈1,…,𝜈𝑁 should be invariant under any Lorentz rotation of the external
momenta. Then, for any 𝜔𝜇𝜈 = −𝜔𝜈𝜇 and any 𝑝𝑘:

lim
𝛼→0

𝜕
𝜕𝛼𝐼𝜈1,…,𝜈𝑁

𝑝𝜇𝑘 → 𝑝𝜇𝑘 + 𝛼𝜔
𝜇
𝜈 𝑝𝜈 = 𝜔𝜇𝜈

⎛
⎜⎜⎜⎜⎜⎝
𝑖
𝑝𝜇𝑘

𝜕
𝜕𝑝𝜈𝑖

⎞
⎟⎟⎟⎟⎟⎠ 𝐼𝜈1,…,𝜈𝑁

!= 0.

Choosing 𝜔𝜇𝜈 to be all possible antisymmetric combinations of the form

𝜔𝜇𝜈 = 𝑝𝜇𝑖 𝑝𝑗𝜈 − 𝑝𝜈𝑖 𝑝𝑗𝜇,

and making the derivatives act on the integrand, we obtain the Lorentz
invariance relations. [Gehrmann, Remiddi ’99]

These follow the same structure, and are in fact linear combinations of the
IBP relations. [Lee ’08]

Modern software typically constructs both for the reduction.

https://arxiv.org/abs/hep-ph/9912329
https://arxiv.org/abs/0804.3008

25

Integral symmetries
Compare these two integrals:

𝐼1 =
d𝑑𝑙

𝑝1 − 𝑙
2
𝑝1 + 𝑝2 − 𝑙

2
𝑙2
and 𝐼2 =

d𝑑𝑙′

𝑝1 + 𝑙′
2
𝑝2 − 𝑙′

2
𝑙′2
.

To see that they are equal, use Feynman parameters:

𝐼𝑖 = Γ3 −
𝑑
2d𝑥1d𝑥1d𝑥1 𝑥1𝑥2𝑥3 𝛿(1 − 𝑥1 − 𝑥2 − 𝑥3)𝒰 3−𝑑

𝑖 ℱ 𝑑/2−3
𝑖 ,

𝒰1 = 𝑥1 + 𝑥2 + 𝑥3, ℱ1 = (𝑥1 + 𝑥2) 𝑥3𝑝21 + (𝑥1 + 𝑥3) 𝑥2𝑝22 + 2𝑥2𝑥3𝑝1 ⋅𝑝2,

𝒰2 = 𝑥1 + 𝑥2 + 𝑥3, ℱ2 = (𝑥2 + 𝑥3) 𝑥1𝑝21 + (𝑥1 + 𝑥3) 𝑥2𝑝22 + 2𝑥1𝑥2𝑝1 ⋅𝑝2.

Both expressions become identical under 𝑥1,2,3 ↔ 𝑥3,2,1. In momenta
space this corresponds to 𝑙′ = 𝑙 − 𝑝1. [Pak ’11; FEYNSON]

Automated implementation: FEYNSON (github.com/magv/feynson).
Example: example.feynson.symmetrize.in.

https://arxiv.org/abs/1111.0868
https://github.com/magv/feynson
https://github.com/magv/feynson

26

Scaleless (zero) integral detection
For efficiency, scaleless integrals should be put to zero early.
Consider the triangle family with one off-shell leg:

𝐼𝑎,𝑏,𝑐 ≡
𝑎

𝑏
𝑐

Two subsectors of this family are zero:

𝐼0,𝑏,𝑐 ≡
𝑏

𝑐
= 0, and 𝐼𝑎,𝑏,0 ≡

𝑎

𝑏
= 0.

Sufficient criteria (Lee ’13): a family (or a subsector) is zero if there are such
𝑥-independent 𝑘𝑖, that

𝑖
𝑘𝑖 𝑥𝑖

𝜕
𝜕𝑥𝑖

(ℱ (𝑥) + 𝒰(𝑥)) = ℱ (𝑥) + 𝒰(𝑥),

whereℱ ,𝒰 , and 𝑥 give the corresponding Feynman parameterization.
Implementation: any IBP solver, also FEYNSON.
Example: example.feynson.zero-sectors.in.

https://arxiv.org/abs/1310.1145

27

Laporta algorithm

Solving IBP relations “by hand” (with indices as symbolic variables) can be
done in simpler cases. For more complicated problems use the Laporta
algorithm: [Laporta ’00]

1. Substitute integer values for the indices 𝜈𝑖 into the IBP relations,
obtaining a large linear system with many different 𝐼𝜈1…𝜈𝑁 .

2. Define an ordering on 𝐼𝜈1…𝜈𝑁 from “simple” to “complex” integrals.
* E.g. 𝐼0,1,1 < 𝐼1,1,0 < 𝐼1,1,1 < 𝐼1,2,1 < 𝐼2,1,1, etc.

3. Perform Gaussian elimination on the linear system, eliminating the
most “complex” integrals first.

4. A small number of “simple” integrals will remain uneliminated.
⇒ These are the master integrals. The rest will be expressed as their

linear combinations.
* The number of master integrals is always finite. [Smirnov, Petukhov ’04]

Solving IBP relations is a major bottleneck in cutting edge calculations.

http://arxiv.org/abs/hep-ph/0102033
https://arxiv.org/pdf/1004.4199

28

IBP reduction example

𝐼𝑎,𝑏,𝑐 ≡
𝑝1

𝑝2
𝑎

𝑏

𝑐
, 𝑝21 = 𝑝22 = 0, 𝑝1 ⋅𝑝2 = 𝑠/2.

(𝑑 − 6) 𝐼2,1,1 − 𝐼1,2,1 − 𝐼1,1,2 = 0
𝑠 𝐼1,2,1 − 𝑠 𝐼1,1,2 = 0

𝑠 𝐼1,1,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
(𝑑 − 4) 𝐼1,1,1 − 𝐼0,2,1 − 𝐼0,1,2 = 0

−2 𝐼−1,3,1 − 𝐼−1,2,2 + (𝑑 − 3) 𝐼0,2,1 = 0
−2 𝐼−1,1,1 − 𝑠 𝐼0,1,1 = 0
−𝐼0,3,1 + 𝐼0,1,3 = 0
𝑠 𝐼−1,2,1 − 𝑠 𝐼−1,1,2 = 0

−𝐼−1,2,1 − 𝐼−1,1,2 + (𝑑 − 2) 𝐼0,1,1 = 0
−𝐼−1,2,1 − 𝐼−1,1,2 − 𝑠 𝐼0,1,2 + 𝐼0,1,1 = 0
−𝐼−1,2,2 − 2𝐼−1,1,3 + (𝑑 − 3) 𝐼0,1,2 = 0
𝑠 𝐼−1,2,2 − 2𝑠 𝐼−1,1,3 + 𝑠 𝐼0,1,2 = 0

−2 𝐼−1,2,2 − 𝑠 𝐼0,2,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
−𝐼−1,2,2 − 2 𝐼−1,1,3 − 2𝑠 𝐼0,1,3 + 𝐼0,1,2 = 0

−𝐼0,2,1 + 𝐼0,1,2 = 0

⟺

⎛
⎜⎜⎜⎝

𝑑 − 6 −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎠

= 0

After Gaussian elimination (2 operations):
⎛
⎜⎜⎜⎝

1 1/(6 − 𝑑) 1/(6 − 𝑑) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎠

= 0

28

IBP reduction example

𝐼𝑎,𝑏,𝑐 ≡
𝑝1

𝑝2
𝑎

𝑏

𝑐
, 𝑝21 = 𝑝22 = 0, 𝑝1 ⋅𝑝2 = 𝑠/2.

(𝑑 − 6) 𝐼2,1,1 − 𝐼1,2,1 − 𝐼1,1,2 = 0
𝑠 𝐼1,2,1 − 𝑠 𝐼1,1,2 = 0

𝑠 𝐼1,1,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
(𝑑 − 4) 𝐼1,1,1 − 𝐼0,2,1 − 𝐼0,1,2 = 0

−2 𝐼−1,3,1 − 𝐼−1,2,2 + (𝑑 − 3) 𝐼0,2,1 = 0
−2 𝐼−1,1,1 − 𝑠 𝐼0,1,1 = 0
−𝐼0,3,1 + 𝐼0,1,3 = 0
𝑠 𝐼−1,2,1 − 𝑠 𝐼−1,1,2 = 0

−𝐼−1,2,1 − 𝐼−1,1,2 + (𝑑 − 2) 𝐼0,1,1 = 0
−𝐼−1,2,1 − 𝐼−1,1,2 − 𝑠 𝐼0,1,2 + 𝐼0,1,1 = 0
−𝐼−1,2,2 − 2𝐼−1,1,3 + (𝑑 − 3) 𝐼0,1,2 = 0
𝑠 𝐼−1,2,2 − 2𝑠 𝐼−1,1,3 + 𝑠 𝐼0,1,2 = 0

−2 𝐼−1,2,2 − 𝑠 𝐼0,2,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
−𝐼−1,2,2 − 2 𝐼−1,1,3 − 2𝑠 𝐼0,1,3 + 𝐼0,1,2 = 0

−𝐼0,2,1 + 𝐼0,1,2 = 0

⟺

⎛
⎜⎜⎜⎝

𝑑 − 6 −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎠

= 0

After Gaussian elimination (5 operations):
⎛
⎜⎜⎜⎝

1 0 −2/(𝑑 − 6) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎠

= 0

28

IBP reduction example

𝐼𝑎,𝑏,𝑐 ≡
𝑝1

𝑝2
𝑎

𝑏

𝑐
, 𝑝21 = 𝑝22 = 0, 𝑝1 ⋅𝑝2 = 𝑠/2.

(𝑑 − 6) 𝐼2,1,1 − 𝐼1,2,1 − 𝐼1,1,2 = 0
𝑠 𝐼1,2,1 − 𝑠 𝐼1,1,2 = 0

𝑠 𝐼1,1,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
(𝑑 − 4) 𝐼1,1,1 − 𝐼0,2,1 − 𝐼0,1,2 = 0

−2 𝐼−1,3,1 − 𝐼−1,2,2 + (𝑑 − 3) 𝐼0,2,1 = 0
−2 𝐼−1,1,1 − 𝑠 𝐼0,1,1 = 0
−𝐼0,3,1 + 𝐼0,1,3 = 0
𝑠 𝐼−1,2,1 − 𝑠 𝐼−1,1,2 = 0

−𝐼−1,2,1 − 𝐼−1,1,2 + (𝑑 − 2) 𝐼0,1,1 = 0
−𝐼−1,2,1 − 𝐼−1,1,2 − 𝑠 𝐼0,1,2 + 𝐼0,1,1 = 0
−𝐼−1,2,2 − 2𝐼−1,1,3 + (𝑑 − 3) 𝐼0,1,2 = 0
𝑠 𝐼−1,2,2 − 2𝑠 𝐼−1,1,3 + 𝑠 𝐼0,1,2 = 0

−2 𝐼−1,2,2 − 𝑠 𝐼0,2,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
−𝐼−1,2,2 − 2 𝐼−1,1,3 − 2𝑠 𝐼0,1,3 + 𝐼0,1,2 = 0

−𝐼0,2,1 + 𝐼0,1,2 = 0

⟺

⎛
⎜⎜⎜⎝

𝑑 − 6 −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎠

= 0

After Gaussian elimination (11 operations):
⎛
⎜⎜⎜⎝

1 ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2/(𝑑𝑠 − 6𝑠) 2/(𝑑𝑠 − 6𝑠) ⋅
⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1/𝑠 1/𝑠 ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1/𝑠 1/𝑠 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎠

= 0

28

IBP reduction example

𝐼𝑎,𝑏,𝑐 ≡
𝑝1

𝑝2
𝑎

𝑏

𝑐
, 𝑝21 = 𝑝22 = 0, 𝑝1 ⋅𝑝2 = 𝑠/2.

(𝑑 − 6) 𝐼2,1,1 − 𝐼1,2,1 − 𝐼1,1,2 = 0
𝑠 𝐼1,2,1 − 𝑠 𝐼1,1,2 = 0

𝑠 𝐼1,1,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
(𝑑 − 4) 𝐼1,1,1 − 𝐼0,2,1 − 𝐼0,1,2 = 0

−2 𝐼−1,3,1 − 𝐼−1,2,2 + (𝑑 − 3) 𝐼0,2,1 = 0
−2 𝐼−1,1,1 − 𝑠 𝐼0,1,1 = 0
−𝐼0,3,1 + 𝐼0,1,3 = 0
𝑠 𝐼−1,2,1 − 𝑠 𝐼−1,1,2 = 0

−𝐼−1,2,1 − 𝐼−1,1,2 + (𝑑 − 2) 𝐼0,1,1 = 0
−𝐼−1,2,1 − 𝐼−1,1,2 − 𝑠 𝐼0,1,2 + 𝐼0,1,1 = 0
−𝐼−1,2,2 − 2𝐼−1,1,3 + (𝑑 − 3) 𝐼0,1,2 = 0
𝑠 𝐼−1,2,2 − 2𝑠 𝐼−1,1,3 + 𝑠 𝐼0,1,2 = 0

−2 𝐼−1,2,2 − 𝑠 𝐼0,2,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
−𝐼−1,2,2 − 2 𝐼−1,1,3 − 2𝑠 𝐼0,1,3 + 𝐼0,1,2 = 0

−𝐼0,2,1 + 𝐼0,1,2 = 0

⟺

⎛
⎜⎜⎜⎝

𝑑 − 6 −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎠

= 0

After Gaussian elimination (62 operations):
⎛
⎜⎜⎜⎝

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2/(𝑑𝑠 − 6𝑠) 2/(𝑑𝑠 − 6𝑠) ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1/𝑠 1/𝑠 ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1/𝑠 1/𝑠 ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1/(4 − 𝑑) 1/(4 − 𝑑) ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (𝑑 − 4)/4 (3 − 𝑑)/2 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠/2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ (𝑑 − 4)/(2𝑠) ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (2 − 𝑑)/2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (2 − 𝑑)/2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 3 − 𝑑
⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (2 − 𝑑)/4 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (4 − 𝑑)/2 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ 1 (𝑑 − 5)/𝑠 −1/𝑠 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ 1 ⋅ (𝑑 − 4)/(2𝑠) ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎠

= 0

28

IBP reduction example

𝐼𝑎,𝑏,𝑐 ≡
𝑝1

𝑝2
𝑎

𝑏

𝑐
, 𝑝21 = 𝑝22 = 0, 𝑝1 ⋅𝑝2 = 𝑠/2.

(𝑑 − 6) 𝐼2,1,1 − 𝐼1,2,1 − 𝐼1,1,2 = 0
𝑠 𝐼1,2,1 − 𝑠 𝐼1,1,2 = 0

𝑠 𝐼1,1,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
(𝑑 − 4) 𝐼1,1,1 − 𝐼0,2,1 − 𝐼0,1,2 = 0

−2 𝐼−1,3,1 − 𝐼−1,2,2 + (𝑑 − 3) 𝐼0,2,1 = 0
−2 𝐼−1,1,1 − 𝑠 𝐼0,1,1 = 0
−𝐼0,3,1 + 𝐼0,1,3 = 0
𝑠 𝐼−1,2,1 − 𝑠 𝐼−1,1,2 = 0

−𝐼−1,2,1 − 𝐼−1,1,2 + (𝑑 − 2) 𝐼0,1,1 = 0
−𝐼−1,2,1 − 𝐼−1,1,2 − 𝑠 𝐼0,1,2 + 𝐼0,1,1 = 0
−𝐼−1,2,2 − 2𝐼−1,1,3 + (𝑑 − 3) 𝐼0,1,2 = 0
𝑠 𝐼−1,2,2 − 2𝑠 𝐼−1,1,3 + 𝑠 𝐼0,1,2 = 0

−2 𝐼−1,2,2 − 𝑠 𝐼0,2,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
−𝐼−1,2,2 − 2 𝐼−1,1,3 − 2𝑠 𝐼0,1,3 + 𝐼0,1,2 = 0

−𝐼0,2,1 + 𝐼0,1,2 = 0

⟺

⎛
⎜⎜⎜⎝

𝑑 − 6 −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎠

= 0

After Gaussian elimination (108 operations, ∼ 𝑁2
integrals):

⎛
⎜⎜⎜⎝

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (12 − 4𝑑)/(𝑑𝑠2 − 6𝑠2)
⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (6 − 2𝑑)/(𝑠2)
⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (6 − 2𝑑)/(𝑠2)
⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (2𝑑 − 6)/(𝑑𝑠 − 4𝑠)
⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (𝑑2 − 5𝑑 + 6)/(4𝑠)
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠/2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ (−𝑑2 + 7𝑑 − 12)/(2𝑠2)
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (2 − 𝑑)/2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (2 − 𝑑)/2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 (𝑑 − 3)/𝑠
⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (𝑑2 − 5𝑑 + 6)/(4𝑠)
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (𝑑2 − 7𝑑 + 12)/(2𝑠)
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ (−𝑑2 + 9𝑑 − 18)/(𝑠2)
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ (−𝑑2 + 7𝑑 − 12)/(2𝑠2)
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ (𝑑 − 3)/𝑠

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎠

= 0 ⟺

⎛
⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎝

4(𝑑 − 3)/((𝑑 − 6) 𝑠2)
2(𝑑 − 3)/𝑠2
2(𝑑 − 3)/𝑠2

−2(𝑑 − 3)/((𝑑 − 4) 𝑠)
−(𝑑 − 3)(𝑑 − 2)/(4𝑠)
−(𝑑 − 3)(𝑑 − 2)/(4𝑠)
−(𝑑 − 4)(𝑑 − 3)/(2𝑠)

−(2 − 𝑑)/2
−(2 − 𝑑)/2
−𝑠/2

(𝑑 − 4)(𝑑 − 3)/(2𝑠2)
(𝑑 − 4)(𝑑 − 3)/(2𝑠2)
(𝑑 − 6)(𝑑 − 3)/𝑠2
−(𝑑 − 3)/𝑠
−(𝑑 − 3)/𝑠

⎞
⎟⎟⎟⎠

𝐼0,1,1

29

IBP software

FIRE6 (bitbucket.org/feynmanIntegrals/fire) [Smirnov, Chukharev ’19]

* Fast and parallel Laporta-style IBP reduction implementation.

* Has a (terrible) MATHEMATICA interface, but C++ core.

* Can use modular arithmetic methods to control intermediate
expression swell, and for greater parallelizibility (thousands of cores).

* Requires LITERED to discover symmetries within integral families.

* Good for zero- or single-variate reduction at high loop count.
KIRA (kira.hepforge.org): [Maierhöfer, Usovitsch, Uwer ’18]

* Fast and parallel Laporta-style IBP reduction implementation.

* Automatically finds symmetries within and between families.

* Optionally uses modular arithmetic via FIREFLY. [Klappert, Lange, et al ’20]

* Good for multivariate reduction.

* Main drawback: high memory use (e.g. 200GB for a 4-loop problem).

https://bitbucket.org/feynmanIntegrals/fire
https://arxiv.org/abs/1901.07808
https://kira.hepforge.org/
http://arxiv.org/abs/1705.05610
https://gitlab.com/firefly-library/firefly
https://arxiv.org/abs/2008.06494

30

IBP software, contd.
LITERED (inp.nsk.su/∼lee/programs/LiteRed) [Lee ’13]

* Heuristic-driven IBP relation solution for general indices.

* Written in MATHEMATICA, easy to use, but slow, and not parallelizable.

* Contains auxiliary functions for integral differentiation, Feynman
parameterization, and dimentional recurrence construction.

FORCER (github.com/benruijl/forcer) [Ruijl, Ueda, Vermaseren ’17]

* Hand-crafted reduction for massless 2-point functions up to 4 loops.

* Written in FORM, parallelizable.

* The fastest thing for massless 2-point functions.
Others:

* FINITEFLOW (a library for arbitrary computations). [Peraro ’19]

* RATRACER (fast modular equation solved compatible with KIRA). [V.M. ’22]

* CARAVEL (a library for amplitude computations). [Cordero, Sotnikov et al ’20]

* REDUZE, AIR, FMFT, MATAD, private implementations, etc.

https://inp.nsk.su/~lee/programs/LiteRed/
https://arxiv.org/abs/1310.1145
https://github.com/benruijl/forcer
https://arxiv.org/abs/1704.06650
https://github.com/peraro/finiteflow
http://arxiv.org/abs/1905.08019
https://github.com/magv/ratracer
https://arxiv.org/abs/2211.03572
https://gitlab.com/caravel-public/caravel
http://arxiv.org/abs/2009.11957
https://arxiv.org/abs/1201.4330
https://arxiv.org/abs/hep-ph/0404258
https://arxiv.org/abs/1707.01710
https://arxiv.org/abs/hep-ph/0009029

31

IBP reduction with KIRA
Usage in short: [kira.hepforge.org]

* Define kinematics (config/kinematics.yaml).
* List integral families (config/integralfamilies.yaml).
* Create a jobs file (e.g. jobs.yaml), defining

* for which integrals to write down IBP relations (𝑟 and 𝑠 bounds);
* for which integrals to solve IBP relations (𝑟, 𝑠, and 𝑑 bounds, or a list).

* Get the results as MATHEMATICA (or FORM) substitution tables.
Guide to the notation:

* 𝑟 is the sum of denominator powers (positive indices);
* 𝑠 is the sum of numerator powers (negative indices);
* 𝑑 is the sum of dots (indices ≥ 2);
* 𝑡 is the number of denominators.

𝑟 𝑠 𝑑 𝑡
𝐼1,2,1,0,0 4 0 1 3
𝐼1,1,3,−1,0 5 1 2 3 111002 = Sector id 7

𝐼0,2,2,0,0 4 0 2 2
𝐼0,1,2,−2,0 3 2 1 2 011002 = Sector id 6

See: kira_example/ and example.kira.m.

https://kira.hepforge.org/

32

Rational function arithmetic: classical

𝑓(𝑥, 𝑦) = 2𝑥𝑦 − 𝑦2

𝑥 − 𝑦
+ 𝑦

3 − 3𝑥𝑦2
𝑥2 − 𝑦2 = ?

Computing the result the classical way:

1. Common denominator: ((2𝑥𝑦 − 𝑦2)(𝑥 + 𝑦) + 𝑦3 − 3𝑥𝑦2)/(𝑥2 − 𝑦2)
2. Expand the numerator: (2𝑥2𝑦 − 𝑥𝑦2 + 2𝑥𝑦2 − 𝑦3 + 𝑦3 − 3𝑥𝑦2)/(𝑥2 − 𝑦2)
3. Combine alike terms: (2𝑥2𝑦 − 2𝑥𝑦2)/(𝑥2 − 𝑦2)
4. Cancel common factors: 2𝑥𝑦/(𝑥 + 𝑦)
Runtime: 𝒪 (𝑁2

initial monomials𝑁digits per monomial)
Peak memory needed: 𝒪 (𝑁2

initial monomials𝑁digits per monomial)

Note:

* short input (polynomials with up to 2 monomials),

* large intermediate expression (up to 8 monomials per poly),

* short output (up to 2 monomials per poly).
⇒ The runtime scales with the intermediate expression size!

Can the runtime scale only with the output size instead?

33

Rational function arithmetic: interpolation

Computing the result via interpolation based on an anzatz:

1. Prepare an ansatz: 𝑓(𝑥, 𝑦) = 𝑐1𝑥𝑦/(𝑥 + 𝑐2𝑦)
2. Evaluate 𝑓 (twice): 𝑓(1, 1) = 1, 𝑓(1, 2) = 4/3
3. Solve for 𝑐𝑖: 𝑐1 = 2, 𝑐2 = 1
Runtime, evaluation: 𝑁final monomials × 𝒪 (𝑁initial monomials𝑁digits per monomial)
Runtime, interpolation: 𝒪 (𝑁2

final monomials𝑁digits per monomial)
Peak memory needed: 𝒪 (𝑁2

final monomials𝑁digits per monomial)

The runtime scales with the result size (number of final monomials).

* But is still scales with the number of digits in the intermediate
expressions.
Can it be proportional only to𝑁digits per final monomial?

34

Rational function arithmetic: modular interpolation

Same interpolation, but using modular arithmetic:

* Interpolate keeping the values as integers modulo a prime numer 𝑃1.
* E.g. modulo 997: 567 + 678 = 248; −1 = 996; 1/2 = 499; etc.

* Use rational number reconstruction to upgrade 𝑐𝑖 from integers to
rationals modulo 𝑃1. [Wang ’81; Monagan ’04]

* Repeat the same with primes 𝑃2, 𝑃3, … .

* Use the Chinese remainder theorem to get 𝑐𝑖 modulo 𝑃1 ⋅𝑃2 ⋅𝑃3⋯.

* Stop when 𝑐𝑖 no longer change.
Runtime: same, but𝑁digits per monomial → 𝑁digits per final monomial.
This is also faster on a computer: all operations are on small integers!

https://dx.doi.org/10.1145/800206.806398
https://dx.doi.org/10.1145/1005285.1005321

35

Modular interpolation example
To find a symbolic form of a rational function 𝑓(𝑥1, … , 𝑥𝑁):

* Evaluate 𝑓 modulo a prime number many times, with 𝑥𝑖 set to integers.
* Reconstruct the exact symbolic form of 𝑓 from the obtained values.

Example: if we have an unknown 𝑓(𝑥), and we have evaluated
𝑓(11) = 139 (mod 997) ,
𝑓(38) = 350 (mod 997) ,

𝑓(65) = 479 (mod 997) ,
𝑓(92) = 115 (mod 997) ,

then we can use polynomial interpolation to find a polynomial form of 𝑓:
𝑓(𝑥) = 618 + 979 𝑥 + 486 𝑥2 + 41 𝑥3 (mod 997) ,

and then rational function reconstruction to find an equivalent rational form:

𝑓(𝑥) = 996 + 333𝑥
1 + 𝑥 (mod 997) ,

and finally rational number reconstruction to find the rational coefficients:

𝑓(𝑥) =
−1 + 2

3𝑥
1 + 𝑥 (mod 997) .

Guess that this is the true form of 𝑓(𝑥); evaluate more times to verify.

36

Function reconstruction algorithms
If an anzatz is unknown, multiple reconstruction algorithms are available:

* Univariate case:
* Newton interpolation for dense polynomials. [Newton 1675; Peraro ’16]

* Number of evaluations ∼ 𝑁maximal degree.

* Ben-Or/Tiwari for sparse polynomials. [Ben-Or, Tiwari ’88]

* Number of evaluations ∼ 2𝑁monomials.

* Thiele interpolation for dense rationals.
* Number of evaluations ∼ 2𝑁maximal degree.

* Multivariate case:
* Newton applied recursively in each variable for dense polynomials.

* Number of evaluations ∼ (𝑁maximal degree)𝑁scales .

* Zippel (∼ recursive Newton with prunning) + early termination for
sparse polynomials. [Zippel ’90; Kaltofen, Lee ’03]

* Number of evaluations ≲ 𝑁scales𝑁maximal degree𝑁monomials.

* Multivariate Ben-Or/Tiwari for sparse polynomials. [Go ’06]

* Number of evaluations ∼ 2𝑁monomials.

* First Thiele, then Zippel and/or Ben-Or/Tiwari for multivariate rationals
(the FIREFLY library). [Klappert, Lange ’19; Klappert, Klein, Lange ’20]

https://arxiv.org/abs/1608.01902
https://dx.doi.org/10.1145/62212.62241
https://dx.doi.org/10.1016/S0747-7171(08)80018-1
https://dx.doi.org/10.1016/S0747-7171(03)00088-9
http://www.cecm.sfu.ca/CAG/theses/soogo.pdf
https://gitlab.com/firefly-library/firefly
https://arxiv.org/abs/1904.00009
https://arxiv.org/abs/2004.01463

37

IBP performance checklist
To improve IBP performance:
1. Use modular arithmetic methods. [von Manteuffel, Schabinger ’14; Peraro ’16]

2. Make the result smaller:
2.1 Reduce whole amplitudes (not individual integrals).
2.2 Choose master integrals that minimize the result size.

* Use 𝑑-factorizing bases that ensure the factorization of 𝑑 in the
denominators of IBP coefficients. [Usovitsch ’20; Smirnov, Smirnov ’20]

* Consider quasi-finite bases. [von Manteuffel, Panzer, Schabinger ’14]

* Consider uniform transcendentality bases, if possible. [Bendle et al ’19]

2.3 Construct a smaller ansatz for the result. [Abreu et al ’19; De Laurentis, Page ’22]
2.4 Set some of the variables to fixed numbers.

* E.g. reduce with𝑚2
𝐻 /𝑚2

𝑡 set to 12/23.
* Or perform IBP reduction separately for each phase-space point, and

interpolate in between. [Jones, Kerner et al ’18; Chen, Heinrich et al ’19, ’20]

3. Improve the evaluation performance:
3.1 Combine IBP relations (using syzygies) to eliminate integrals with raised

(or lowered) indices. [Gluza, Kajda, Kosower ’10; Scahbinger ’11]
3.2 Pre-solve the IBP system to simplify it before solving it (NEATIBP, BLADE).

[Wu, Boehm, Ma, Xu, Zhang ’23; Guan, Liu, Ma, Wu ’23]

http://arxiv.org/abs/1406.4513
https://arxiv.org/abs/1608.01902
https://arxiv.org/abs/2002.08173
https://arxiv.org/abs/2002.08042
https://arxiv.org/pdf/1411.7392
https://arxiv.org/abs/1908.04301
https://arxiv.org/abs/1904.00945
https://arxiv.org/abs/2203.04269
https://arxiv.org/abs/1802.00349
https://arxiv.org/abs/1911.09314
https://arxiv.org/pdf/2011.12325
https://arxiv.org/abs/1009.0472
https://arxiv.org/abs/1111.4220
https://github.com/yzhphy/NeatIBP
https://gitlab.com/multiloop-pku/blade
https://arxiv.org/abs/2305.08783

38

Using Kira with modular reconstruction (FireFly)

Basic idea:
1. Instruct KIRA to use FIREFLY for modular reconstruction.
2. Don’t ask for reduction tables for each integral, instead reduce
complete expressions for each amplitude.
Because smaller output→ faster reduction.

In KIRA this is done in two steps:
1. Instruct KIRA to export the IBP equations into files.
2. Add additional equation files, with equations like

AMP1 = 𝐶1𝐼123 + 𝐶2𝐼112 + … , one per each amplitude.
3. Instruct KIRA to load all the “user-defined” equations and reduce

AMP𝑖 to master integrals.
See: kira_example_amplitude/ and example.kira-amplitude.m.

39

Integral evaluation via
sector decomposition

39

Sector decomposition in short

𝐼 =
1

0
d𝑥

1

0
d𝑦 𝑥 + 𝑦

−2+𝜀
= ?

Problem: the integrand diverges at 𝑥, 𝑦 → 0, can’t integrate numerically.
Solution: [Heinrich ’08; Binoth, Heinrich ’00]

1. Factorize the divergence in 𝑥 and 𝑦 with sector decomposition:

* 𝐼 = ∫⋯ × 𝜃 𝑥 > 𝑦
Sector 1

+𝜃 𝑦 > 𝑥
Sector 2

 = ∫
1

0
d𝑥∫

𝑥

0
d𝑦 𝑥 + 𝑦

−2+𝜀
+
⎛
⎜⎜⎜⎜⎝
𝑥
↕
𝑦

⎞
⎟⎟⎟⎟⎠

2. Rescale the integration region in each sector back to a hypercube:

* 𝐼 𝑦→𝑥𝑦= ∫1
0

d𝑥 𝑥−1+𝜀
Factorized pole

∫1
0

d𝑦 1 + 𝑦
−2+𝜀

+
⎛
⎜⎜⎜⎜⎝
𝑥
↕
𝑦

⎞
⎟⎟⎟⎟⎠

3. Extract the pole at 𝑥 → 0 analytically, expand in 𝜀:

* 𝐼 = − 2𝜀 ∫
1

0
d𝑦 1 + 𝑦

−2+𝜀
= − 2𝜀 ∫

1

0
d𝑦

1

1+𝑦
2 −

ln1+𝑦

1+𝑦
2 𝜀 + 𝒪 𝜀2

4. Integrate each term in 𝜀 numerically (they all converge now).
In practice: geometric sector decomposition. [Bogner, Weinzierl ’07; Kaneko, Ueda, ’09]

https://arxiv.org/abs/0803.4177
https://arxiv.org/abs/hep-ph/0004013
https://arxiv.org/abs/0709.4092
https://arxiv.org/abs/0908.2897

40

Contour deformation in short

𝐼 ≡ d𝑛�⃗�
𝑈𝛼�⃗�

𝐹𝛽�⃗�, … + 𝑖0
Problem: can’t integrate numerically if 𝐹 = 0 inside the integration region.
Solution: deform �⃗� into the complex plane to escape the pole:

�⃗� → �⃗� + 𝑖 Δ⃗�⃗�

⇒

⎧⎪⎪⎨
⎪⎪⎩

𝐹 → 𝐹 + 𝑖Δ𝜕𝑥𝐹 − Δ2 𝜕2𝑥𝐹 − 𝑖Δ3 𝜕3𝑥𝐹 + 𝒪 Δ4 ,

Im 𝐹 → Δ𝜕𝑥𝐹 − Δ3 𝜕3𝑥𝐹 + 𝒪 Δ5 .

Choose Δ⃗�⃗� to enforce the +𝑖0 prescription (Im 𝐹 > 0):

Δ⃗�⃗� = 𝜆𝜕𝑥𝐹�⃗� ⇒ Im 𝐹 ≈ 𝜆 𝜕𝑥𝐹
2
−𝜆3 𝜕𝑥𝐹

3
𝜕3𝑥𝐹+𝒪 𝜆5 > 0.

* Lambda should be small enough that Im 𝐹 > 0.
* But: larger 𝜆 improves convergence (the pole is further away).
* In practice: choose 𝜆 heuristically, but decrease it if Im 𝐹 < 0.

* Gradient-based 𝜆 optimization can be useful. [Winterhalder et al ’21]

https://arxiv.org/abs/2112.09145

41

Sector decomposition software
pySECDEC (github.com/gudrunhe/secdec): [Heinrich et al ’23, ’21, ’18, ’17, ’15, ’08, ’00]

* A PYTHON (3.8+) library that generates C++ code for integration.
* Uses Format O𝑛 from FORM to optimize the integrand expressions.

* Installable via python3 -m pip install pySecDec.
* Can integrate on CPUs & GPUs.
* Integration via Randomized Quasi Monte Carlo (QMC); optionally
VEGAS/SUAVE/DIVONNE/CUHRE (CUBA), or CQUAD (GSL).

* Adaptive evaluation of weighted sums of integrals (i.e. amplitudes).
* Evaluating a sum is faster than evaluating each integral separately.

FIESTA (bitbucket.org/feynmanIntegrals/fiesta): [Smirnov et al ’21, ’15, ’13, ’09, ’08]

* MATHEMATICA core, generates/compiles to C++ behind the scenes.
* Monte-Carlo integration (QMC and others) on both CPUs and GPUs.
* Interprets more than compiles (good at high loops and few scales).

FEYNTROP (github.com/michibo/feyntrop): [Borinsky, Munch, Tellander ’23]

* Tropical sampling for quasi-finite integrals (no sector decomposition).
* When applicable, can be faster than e.g. pySECDEC, especially at higher
loops and deep expansions in 𝜀.

https://github.com/gudrunhe/secdec
https://arxiv.org/abs/2305.19768
https://arxiv.org/abs/2108.10807
https://arxiv.org/abs/1811.11720
https://arxiv.org/abs/1703.09692
http://arxiv.org/abs/1502.06595
http://arxiv.org/abs/0803.4177
http://arxiv.org/abs/hep-ph/0004013
https://github.com/mppmu/qmc
http://www.feynarts.de/cuba/
http://www.gnu.org/software/gsl/
https://bitbucket.org/feynmanIntegrals/fiesta/
http://arxiv.org/abs/2110.11660
http://arxiv.org/abs/1511.03614
http://arxiv.org/abs/1312.3186
http://arxiv.org/abs/0912.0158
http://arxiv.org/abs/0807.4129
https://github.com/mppmu/qmc
https://github.com/michibo/feyntrop
https://arxiv.org/abs/2302.08955

42

Sector decomposition with pySECDEC

Usage overview (details: secdec.readthedocs.io):
1. Use the PYTHON module pySecDec to define your integrals and
generate the code for the integration library.

2. Compile the integration library.
3. Import the integration library from PYTHON (or the command line), call
it to perform integration.

See: example.pysecdec.py, and then example.pysecdec.m.

https://secdec.readthedocs.io/

43

Limitations of sector decomposition
Practical limitations of the method:

* The numerical convergence can be poor in high energy regions, near
thresholds, and in other special parameter configurations.

* Asymptotic expansion helps in some cases (available in pySECDEC and
FIESTA/asy2.m), but not in others.

* Integrals with many propagators and contour deformation will take a
lot of time to compile.

* Related integrals can have widely different convergence rates. For
example, integration time to 10−3 precision with pySECDEC:1

orders 𝑡, 𝑠 orders 𝑡, 𝑠

𝑚𝑊
𝑚𝑍 𝜀−3…𝜀0 27 𝑚𝑊

𝑚𝑍 𝜀−2…𝜀0 57

𝑚𝑊
𝑚𝑍 𝜀−2…𝜀0 1230 𝑚𝑊

𝑚𝑍 𝜀−2…𝜀0 >9000

1pySECDEC 1.5.3, NVidia A100 GPU.

44

Back to the e+e– annihilation

44

Tying it all together

|𝑀(𝑒+𝑒− → partons)|2 = 4𝜋𝛼(2 − 𝑑)Re𝐹1(𝑞)

= 4𝜋𝛼Re
⎛
⎜⎜⎜⎜⎝
𝑔𝜇𝜈
𝑞2

All

possible
diagrams𝑞, 𝜇 𝑞, 𝜈

⎞
⎟⎟⎟⎟⎠

= ?

See: allthecode.m, plot-pysecdec-results.py or
plot-pysecdec-results.ipynb.

45

Differential equations

45

Method of differential equations

Consider a family of integrals depending on external momenta 𝑝𝑖 and
masses𝑚𝑖:

𝐼𝜈1,𝜈2,…,𝜈𝑁 ≡
d𝑑𝑙1
(2𝜋)𝑑

… d𝑑𝑙𝐿
(2𝜋)𝑑

1
𝐷𝜈1
1 …𝐷

𝜈𝑁
𝑁

= 𝐼𝜈1,𝜈2,…,𝜈𝑁 𝑝𝑖 ⋅𝑝𝑗, 𝑚
2
𝑖 .

With dimensional analysis one of the parameters can be scaled out, making
remaining arguments dimensionless:

𝐼 𝑝𝑖 ⋅𝑝𝑗, 𝑚𝑖 = 𝑝21
𝑑
2𝐿−∑𝑖 𝜈𝑖 𝐼 ({𝑥𝑖}) , {𝑥𝑖} =

𝑝𝑖 ⋅𝑝𝑗
𝑝21

, 𝑚
2
𝑖
𝑝21
 .

Idea: if {𝑥𝑖} ≠ ∅, we can construct differential equations in 𝑥𝑖, and solve
them instead of performing the loop integration directly.
(In practice: just set 𝑝21 = 1, restore it in the end by dimensionality).

46

Constructing differential equations
Suppose IBP relations were solved, and we have a set of master integrals 𝐼𝑖.
1. Differentiate each 𝐼𝑖 by one of the parameters, 𝑥 = 𝑚2

𝑎 or 𝑝𝑎 ⋅ 𝑝𝑏:

𝜕𝑚2𝑎 𝐼 =
d𝑑𝑙1
(2𝜋)𝑑

… d𝑑𝑙𝐿
(2𝜋)𝑑

𝜕𝑚𝑎
1

𝐷𝜈1
1 …𝐷

𝜈𝑁
𝑁
,

𝜕𝑝𝑎⋅𝑝𝑏𝐼 = 𝐺
−1

𝑖𝑎
𝑝𝑖 ⋅𝜕𝑝𝑏𝐼 , 𝜕𝑝𝑎⋅𝑝𝑎𝐼 =

1
2
𝐺−1

𝑖𝑎
𝑝𝑖 ⋅𝜕𝑝𝑎𝐼 ,

where 𝐺 is the Gram matrix: 𝐺𝑖𝑗 ≡ 𝑝𝑖 ⋅ 𝑝𝑗.
2. Express the derivatives as integrals in the same family:

𝜕𝑥𝐼𝑖 =
𝑘
𝐶𝑘 𝐼𝜈(𝑘)1 ,𝜈(𝑘)2 ,…,𝜈(𝑘)𝑁

.

3. Use the IBP tables to reduce those integrals back to the master
integrals, thus obtaining a linear differential equation system for 𝐼𝑖:

𝜕𝑥𝐼𝑖
IBP=

𝑗
𝑀𝑖𝑗 𝐼𝑗.

47

Example: self-energy with one mass
Consider a family of self-energy with one mass integrals

𝐼𝑎,𝑏 ≡
𝑎

𝑏

=
d𝑑𝑙
(2𝜋)𝑑

1

𝑞 − 𝑙
2𝑎
𝑙2 − 𝑚2

𝑏 .

This family has two master integrals:

𝐼1 ≡ 𝐼0,1 = =
d𝑑𝑙
(2𝜋)𝑑

1
𝑙2 − 𝑚2 ,

𝐼2 ≡ 𝐼1,1 = =
d𝑑𝑙
(2𝜋)𝑑

1

𝑞 − 𝑙
2
𝑙2 − 𝑚2

.

Constructing differential equation system:

𝜕𝑚2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝐼1
𝐼2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

�⃗�

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝐼0,2
𝐼1,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
IBP=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2+𝑑
2𝑚2 0
2−𝑑

2𝑚2𝑚2−𝑞2
−3+𝑑
𝑚2−𝑞2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

𝕄

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝐼1
𝐼2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

�⃗�

.

48

Solution via the epsilon-form
If we have a differential equation system for �⃗�,

𝜕𝑥�⃗�(𝑥, 𝑑) = 𝕄(𝑥, 𝑑) �⃗�(𝑥, 𝑑), where 𝑑 = 4 − 2𝜀,
we can transform to a new basis �⃗� via the transformation matrix 𝕋,

�⃗�(𝑥, 𝜀) = 𝕋(𝑥, 𝜀) �⃗�(𝑥, 𝜀),
and for �⃗� the same differential equation system will look like

𝜕𝑥�⃗� = 𝕋−1 𝕄𝕋 − 𝜕𝑥𝕋 �⃗� ≡ 𝕄′ �⃗�.
Idea: if this system is in an 𝜀-form (has the dependence on 𝜀 factorized),

𝜕𝑥�⃗�(𝑥, 𝜀) = 𝜀 𝕊(𝑥) �⃗�(𝑥, 𝜀),
then the solution for �⃗� as a series in 𝜀 becomes trivial: [Henn ’13]

�⃗�(𝑥, 𝜀) ≡ 𝜀𝑘0
∞

𝑘=0

𝜀𝑘�⃗�(𝑘)(𝑥),

𝜀𝑘�⃗�(𝑘) =𝜀𝑘+1𝕊 �⃗�(𝑘) ⇒ �⃗�(𝑘)(𝑥) =
𝑥
𝕊(𝑥′) �⃗�(𝑘−1)(𝑥′)d𝑥′ + �⃗�(𝑘).

https://arxiv.org/abs/1304.1806

49

Example, cont.: the epsilon-form
The 𝜀-form can be achieved with a transformation to the following basis �⃗�:

�⃗� =
(−1 + 2𝜀)𝑚2 0
−1 + 𝜀 (−1 + 𝜀) 𝑚2 − 𝑞2 �⃗�.

Differential equation system in �⃗� then has the form

𝜕𝑚2 �⃗� = 𝜀

⎛
⎜⎜⎜⎜⎜⎝

− 1
𝑚2 0

− 1
𝑞2

1
𝑚2 −

1
𝑞2

1
𝑚2−𝑞2 − 2

𝑚2−𝑞2

⎞
⎟⎟⎟⎟⎟⎠ �⃗�.

Accordingly, the solution is

�⃗�(0) = �⃗�(0),

�⃗�(1) = �⃗�(1) +
⎛
⎜⎜⎜⎜⎝
−𝐶(0)1 ∫𝑚

2 d𝑚′2

𝑚′2
…

⎞
⎟⎟⎟⎟⎠ ,

�⃗�(2) = �⃗�(2) +
⎛
⎜⎜⎜⎜⎝
−𝐶(1)1 ∫𝑚

2 d𝑚′2

𝑚′2 + 𝐶
(0)
1 ∫𝑚

2 d𝑚′2

𝑚′2
∫𝑚

′2 d𝑚″2

𝑚″2
…

⎞
⎟⎟⎟⎟⎠ .

50

Iterated integrals
The solution to differential equation in an 𝜀-form always come as iterated
integrals of the form of multiple polylogarithms (a.k.a Goncharov
polylogarithms): [Goncharov ’98]

𝐺(𝑤1, 𝑤2, … , 𝑤𝑛; 𝑥) ≡
𝑥

0

d𝑡1
𝑡1 − 𝑤1

𝑡1

0

d𝑡2
𝑡2 − 𝑤2

⋯
𝑡𝑛

0

d𝑡𝑛
𝑡𝑛 − 𝑤𝑛

.

Special case for the trailing zeros:

𝐺(0,… , 0
𝑛

; 𝑥) ≡ 1
𝑛! log𝑛(𝑥).

Integration and differention, the simple case:

d𝑥 1
𝑥 − 𝑎𝐺(�⃗�; 𝑥) = 𝐺(𝑎, �⃗�; 𝑥) + 𝐶,

d
d𝑥𝐺(𝑤1, �⃗�; 𝑥) =

1
𝑥 − 𝑤1

𝐺(�⃗�; 𝑥).

Software: GINAC, HPL, HARMPOL, HYPERINT, POLYLOGTOOLS, etc.

https://arxiv.org/abs/1105.2076
https://www.ginac.de/
https://www.physik.uzh.ch/data/HPL/
https://www.nikhef.nl/~form/maindir/packages/harmpol/harmpol.html
https://bitbucket.org/PanzerErik/hyperint/
https://gitlab.com/pltteam/plt

51

Example, cont.: the solution in GPLs

Rewriting the iterated integrals in terms of 𝐺:

�⃗�(0) = �⃗�(0),

�⃗�(1) = �⃗�(1) + −𝐶
(0)
1 𝐺(0;𝑚2)
… ,

�⃗�(2) = �⃗�(2) + −𝐶
(1)
1 𝐺(0;𝑚2) + 𝐶(0)1 𝐺(0, 0;𝑚2)

… .

It is trivial to generate this answer to any required order. Note that the
answer will only have 𝑤𝑖 ∈ {0, 𝑞2}. By rescaling the weights (or setting 𝑞2
to 1), this can be turned into 𝑤𝑖 ∈ {0, 1}, the harmonic polylogarithms.

52

Multiple polylogarithms, more properties

Differentiation in the general case when 𝑤𝑖 may depend on 𝑥:

d
d𝑥𝐺(𝑤1, … , 𝑤𝑛; 𝑦) =

𝑖
𝐺(𝑤1, … ,��ZZ𝑤𝑖, … , 𝑤𝑛; 𝑦)

d
d𝑥 log

𝑤𝑖 − 𝑤𝑖−1
𝑤𝑖 − 𝑤𝑖+1

,

where 𝑤0 ≡ 𝑦, and 𝑤𝑖+1 ≡ 0.
Integration in the general case when 𝑤𝑖 may depend on 𝑥 is nontrivial, one
must first represent 𝐺 in a way that the integration variable only appears in
the last argument. [Brown ’08]

Automated via HYPERINT (bitbucket.org/PanzerErik/hyperint): [Panzer ’14]

$ maple
> read "HyperInt.mpl";
> fibrationBasis(Hlog(x,[y,x,y]),[x,y]);
Hlog(x,[y,y,y])-Hlog(x,[y,0,y])

https://arxiv.org/abs/0804.1660
https://bitbucket.org/PanzerErik/hyperint/
https://arxiv.org/abs/1403.3385

53

Multiple polylogarithms and their relatives

The integral representation of multiple polylogarithms (𝐺) is equivalent to
the infinite sum representation (Li):

Li𝑚1,…,𝑚𝑛(𝑥1, … , 𝑥𝑛) =
𝑖1>⋯>𝑖𝑛>0

𝑥𝑖11
𝑖𝑚11

⋯ 𝑥𝑖𝑛𝑛
𝑖𝑚𝑛𝑛

=

= (−1)𝑛𝐺0,… , 0
𝑚1−1

, 1𝑥𝑖
, … , 0, … , 0

𝑚2−1

, 1
𝑥1𝑥2⋯𝑥𝑛

; 1.

* Note: there are conflicting conventions for the order of the indices in
the Li summation. Above is the “physicist” notation (used in e.g. HPL,
GINAC, and the MZV datamine).

* The “mathematician” notation is reverse: 0 < 𝑖1 < ⋯ < 𝑖𝑛; it was
used by Goncharov, and is also used in HYPERINT. The order of indices
in the Multiple Zeta Values is also reversed there.

54

Multiple polylogarithms and their relatives, II

* Logarithms are GPLs with a single weight:

log 𝑥 = 𝐺(0; 𝑥), log 𝑎 − 𝑥𝑎
 = 𝐺(𝑎; 𝑥).

* Nielsen’s generalized polylogarithms are GPLs with 𝑤𝑖 ∈ {0, 1}:

𝑆𝑛,𝑝(𝑥) = (−1)
𝑝𝐺(0, ..., 0

𝑛

, 1, ..., 1
𝑝

; 𝑥).

* Harmonic polylogarithms (HPLs) are GPLs with 𝑤𝑖 ∈ {0, ±1}:

𝐻…,+𝑚,−𝑛,0(𝑥) = (−1)𝑚𝐺(… , 0, … , 0, 1
𝑚

, 0, … , 0, −1
𝑛

, 0; 𝑥).

* Two-dimensional HPLs are GPLs with 𝑤𝑖 ∈ {0, 1, 1 − 𝑧, −𝑧}.
* Multiple Zeta Values 𝜁�⃗� are just𝐻�⃗�(1) (in the “physicist” notation).

55

Fixing the integration constants

Differential equations only give the solution up to the integration constants.
Finding these constants is the essential difficulty of the method. There are
many ways.

* By evaluating the integrals in a limit where they simplify.
* Large mass limit. Small mass limit. [Smirnov ’02]

* Even massless integrals can be evaluated by adding masses to them,
and connecting the large mass limit to the massless limit via the
differential equations.

* Using the knowledge of the analytic properties of the integrals.
* E.g.: enforcing regularity in the kinematic limits. [Gehrmann, Remiddi ’00]

* From partial knowledge of the integrals values, such as a Mellin
moment.

* One can integrate over the semi-inclusive integrals to obtain the fully
inclusive ones. [Gituliar ’15]

https://www.springer.com/us/book/9783540423348
https://arxiv.org/abs/hep-ph/0008287
https://arxiv.org/abs/1512.02045

56

Example, cont.: integration constants
First, we consider 𝐼1 (the vacuum bubble) “simple”, and look it up in a book:

= − 𝑖𝜋
𝑑
2

(2𝜋)𝑑
Γ 1 −

𝑑
2
𝑚2 − 𝑖0

𝑑
2−1 .

For 𝐼2: in the limit of zero mass the massive diagram becomes massless,

lim
𝑚2→0

= .

This massless integral we also know from a book:

= 𝑖𝜋
𝑑
2

(2𝜋)𝑑
Γ2 𝑑2 − 1 Γ2 −

𝑑
2

Γ(𝑑 − 2)
−𝑞2 − 𝑖0

𝑑
2−2 .

Then, we can expand these in series’ in 𝜀, compare with the series from
𝜀-form solution, and fix all �⃗�(𝑘).
See: example.diff-eq-massive-self-energy.m.

57

The fundamental solution
A fundamental solution to 𝜕𝑥�⃗� = 𝕄 �⃗� is an 𝑛 by 𝑛 matrix of independent
solutions, such that any solution can be expressed as a linear combination
of its columns.
A fundametal solution for a system in an 𝜀-form, 𝜕𝑥�⃗� = 𝜀 𝕊 �⃗�, can be
constructed as a series in 𝜀:

𝕎 = 1 + 𝜀
𝑥

𝑥0
d𝑥′ 𝕊(𝑥′) + 𝜀2

𝑥

𝑥0
d𝑥′ 𝕊(𝑥′)

𝑥′

𝑥0
d𝑥″ 𝕊(𝑥″) + … .

The general solution is then just𝕎 multiplied by a vector of integration
constants �⃗�:

�⃗�(𝑥, 𝜀) = 𝕎(𝑥, 𝜀) �⃗�(𝜀),
where the constants themselves are a series in 𝜀,

�⃗�(𝜀) ≡ 𝜀𝑘0
∞

𝑘=0

𝜀𝑘�⃗�(𝑘).

This is an alternative way to write down a solution for �⃗�, with the benefit of
being immediately extendable to the multivariate case.

58

The multivariate case
If differential equations in multiple variables are considered, and a
combined 𝜀-form is achieved,

𝜕𝑥𝑖 �⃗�(�⃗�, 𝜀) = 𝜀 𝕊𝑖(�⃗�) �⃗�(�⃗�, 𝜀),

then writing down the solution in this case can be made easy by:
1. Choosing an integration contour along the axes 𝑥𝑖 in an some order,
for example from (0, 0, …) to (𝑥1, 0, …), then to (𝑥1, 𝑥2, 0, …), etc.

2. Writing down the fundamental solutions along each segment,𝕎𝑖.
Because segments are chosen such that only 𝑥𝑖 changes along each,
𝕎𝑖 can be calculated the same as in single-variate case.

The general solution for �⃗� is then

�⃗�(�⃗�, 𝜀) = 𝕎𝑛(𝑥1, … , 𝑥𝑛, 𝜀)⋯𝕎𝑛(𝑥1, 𝜀) �⃗�(𝜀).

Overall this result will be a sum of terms of this form:

𝐺(arguments depending on 𝑥1, … , 𝑥𝑛−1; 𝑥𝑛)⋯𝐺(constants; 𝑥1).

59

Epsilon-form software
FUCHSIA (github.com/magv/fuchsia.cpp) [Gituliar, V.M. ’17; V.M. ’22]

* Uses the Lee algorithm. [Lee ’14]

* Initial version in PYTHON/SAGEMATH, newer version in C++/GINAC.
* Can certify if a system is irreducible (with exceptions).
* Can suggest variable changes that will make it reducible.

LIBRA (github.com/rnlg/Libra) [Lee ’20]

* Lee algorithm in MATHEMATICA.
* Has a GUI to manually choose transformation steps.

CANONICA (github.com/christophmeyer/CANONICA) [Meyer ’17]

* Uses the rational ansatz method (in MATHEMATICA).
Constructs an ansatz for the transformation matrix up to some powers
of the variables, then solves for the coefficients.

EPSILON (github.com/mprausa/epsilon) [Prausa ’17]

* Lee algorithm in C++. Single variable only.
INITIAL (github.com/UT-team/INITIAL) [Dlapa, Henn, Yan ’20]

* Needs the knowledge of a single uniform transcendentality integral.
See: example.diff-eq-massive-self-energy.m.

https://github.com/magv/fuchsia.cpp
https://arxiv.org/abs/1701.04269
https://inspirehep.net/literature/2177952
https://arxiv.org/abs/1411.0911
https://github.com/rnlg/Libra
https://arxiv.org/abs/2012.00279
https://github.com/christophmeyer/CANONICA
https://arxiv.org/abs/1701.04269
%20https://github.com/mprausa/epsilon
https://arxiv.org/abs/1701.00725
https://github.com/UT-team/INITIAL
https://arxiv.org/pdf/2002.02340.pdf

60

Differential equations, numerically
When an 𝜀-form can not be achieved, differential equations can be solved
numerically instead:
1. Construct differential equations along some line in parameter space.
2. Use the differential equation system to construct a power series
anzatz for the integrals at multiple points along this line.

3. Determine the anzatz coefficients at one of the points via boundary
conditions.

4. Determine the ansatz coefficients at a nearby point by matching the
value of the integral numerically.

5. Move to each point in order.
Available software:

* DIFFEXPR (gitlab.com/hiddingm/diffexp) [Hidding ’20]

* AMFLOW (gitlab.com/multiloop-pku/amflow) [Liu, Ma ’22]

* SEASYDE (github.com/TommasoArmadillo/SeaSyde)
[Armadillo, Bonciani, Devoto, Rana, Vicini ’22]

https://gitlab.com/hiddingm/diffexp
https://arxiv.org/abs/2006.05510
https://gitlab.com/multiloop-pku/amflow
https://arxiv.org/abs/2201.11669
https://github.com/TommasoArmadillo/SeaSyde
https://arxiv.org/pdf/2205.03345.pdf

61

Summary

61

Summary

We have talked about:

* Computing loop amplitudes with QGRAF, FORM, COLOR.H, FEYNSON.

* MATHEMATICA as the hot glue.

* IBP reduction with KIRA.

* Numerical evaluation with pySECDEC.

* Differential equations, the 𝜀-form, multiple polylogarithms.

61

Summary

We have talked about:

* Computing loop amplitudes with QGRAF, FORM, COLOR.H, FEYNSON.

* MATHEMATICA as the hot glue.

* IBP reduction with KIRA.

* Numerical evaluation with pySECDEC.

* Differential equations, the 𝜀-form, multiple polylogarithms.

Thank you for your attention.

62

Backup slides: Lee algorithm

62

Lee algorithm for finding the epsilon-form
Overall idea: to go from a differential equation system

𝜕𝑥�⃗� = 𝕄 �⃗�, where𝕄(𝑥, 𝜀) =
𝑖

𝔸𝑖(𝜀)
(𝑥 − 𝑥𝑖)

𝑘𝑖
,

to an 𝜀-form
𝜕𝑥�⃗� = 𝜀 𝕊 �⃗�, where 𝕊(𝑥) =

𝑖

𝕊𝑖
𝑥 − 𝑥𝑖

,

apply a series of simple basis transformation �⃗� = 𝕋 �⃗�, such that each brings
the system a bit closer to an 𝜀-form. [Lee ’14]

1. If a higher pole is present (i.e. 𝑘𝑖 ≠ 1) then use a transformation that
reduces the rank of𝔸𝑖, eventually eliminating it. (“Fuchsification”).

2. Else, for the eigenvalues of𝔸𝑖 of the form 𝑛+𝑘𝜀, use a transformation
that shifts 𝑛 by ±1, eventually setting it to zero. (“Normalization”).

3. If all𝔸𝑖 eigenvalues are proportional to 𝜀, use a transformation that
makes the whole𝔸𝑖 proportional to 𝜀. (“Factorization”).

https://arxiv.org/abs/1411.0911

63

Lee algorithm, fuchsification
Consider a “balance” transformation between 𝑥1 and 𝑥2:

𝕋(𝑥, 𝜀) = ℙ(𝜀) + 𝑥 − 𝑥2𝑥 − 𝑥1
ℙ(𝜀), with ℙ2 = ℙ, and ℙ + ℙ = 1.

If the matrix𝕄 has a pole at 𝑥 = 𝑥1 of power 𝑛 > 1,

𝕄 = 𝔸−𝑛 (𝑥 − 𝑥1)
−𝑛 +𝔸−𝑛+1 (𝑥 − 𝑥1)

−𝑛+1 + … ,

then either
1. there is such ℙ and 𝑥2 , that the transformed𝔸−𝑛 is of lower rank
than𝔸−𝑛 , while the leading expansion order around 𝑥 = 𝑥2 does
increase beyound 𝑛 = 1; or

2. the 𝜀-form cannot be reached by any rational transformation.
Then, a series of balance transformations can decrease the rank of all𝔸−𝑛
with 𝑛 ≠ 1 to zero, transforming𝕄 into the Fuchsian form:

𝕄(𝑥, 𝜀) = 𝔸𝑖(𝜀)
𝑥 − 𝑥𝑖

.

64

Lee algorithm, normalization
Differential equations for master integrals are observed to have a special
feature: when transformed into Fuchsian form,

𝕄 = 𝔸𝑖
𝑥 − 𝑥𝑖

,

the eigenvalues of𝔸𝑖 often have the form of 𝑛 + 𝑘𝜀, where 𝑛 ∈ ℕ.
Now, a balance can be found between 𝑥1 and 𝑥2 that does not spoil the
Fuchsian form. Such a balance will shift one of the eigenvalues of𝔸1 by +1,
one of𝔸2 by −1.
Then, a series of such balances can transform𝕄 into a normalized
Fuchsian form: where all𝔸𝑖 have eigenvalues proportional to 𝜀.

* Sometimes eigenvalues of the form 1
2 + 𝑛 + 𝑘𝜀 are encountered. If

they are present at up to three different𝔸𝑖 , then it is possible to
change the integration variable from 𝑥 to such 𝑦, that the differential
equation in 𝑦 has all the eigenvalues in the form 𝑛 + 𝑘𝜀.

* Sometimes eigenvalues are not linear in 𝜀. This often means the
master integral basis is linearly dependent.

65

Lee algorithm, factorization

Finally, once all the eigenvalues of𝕄 residues are proportional to 𝜀, then
either
1. the whole matrix can be made proportional to 𝜀 by a transformation
that does not depend on 𝑥; or

2. the 𝜀-form can not be reached.
Such transformation is searched for via an ansatz.
Note that on this step, and on all previous ones too, there exists multiple
transformations that can achieve the desired form. As a result, the 𝜀-form
is not unique.

66

Lee algorithm, the multivariate case
If a system of differential equations in multiple variables is considered:

𝜕𝑥𝑖 �⃗�(�⃗�, 𝜀) = 𝕄𝑖(�⃗�, 𝜀) �⃗�(�⃗�, 𝜀),

then it is useful to have a single transformation 𝕋(𝑥, 𝜀) that transforms all
of the differential equation systems into 𝜀-form simultaneously,

𝜕𝑥𝑖 �⃗�(�⃗�, 𝜀) = 𝜀 𝕊𝑖(�⃗�) �⃗�(�⃗�, 𝜀), with �⃗� = 𝕋 �⃗�.

Single-variable Lee algorithm can be reused for this by:
1. Reducing𝕄1 to an 𝜀-form with 𝕋1(𝑥1, 𝑥2, … , 𝜀).
2. Transforming all the equations with 𝕋1.
3. Reducing𝕄2 to an 𝜀-form with a such a 𝕋2(𝑥2, … , 𝜀) that is
independent of 𝑥1 and 𝜀.

4. Transforming all the equations with 𝕋2. This will not spoil the 𝜀-form
in 𝑥1 because 𝕋2 does not depend on 𝑥1 or 𝜀.

5. Repeating similarly for the rest of𝕄𝑖.

	Diagram generation
	Feynman rules
	Tensor summation
	IBP reduction
	Integral evaluation via sector decomposition
	Back to the emath text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfg+emath text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfg– annihilation
	Differential equations
	Summary
	Backup slides: Lee algorithm

