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Motivation

▶ Permanent separation of
positive and negative
charge

▶ Fundamental property of
particles

▶ Existence of EDM is only
possible via violation of
time reversal T and parity
P symmetry

▶ Predominance of matter
over antimatter in the
Universe



The Cooler Synchrotron (COSY)



The RF Wien filter: requirements
▶ An RF device that manipulates the polarization without

inducing beam oscillations.
▶ Orthogonality between the electric and magnetic fields
▶ High-field homogeneity
▶ Vanishing Lorentz force



Polynomial Chaos Expansion (PCE)

The polynomial chaos expansion (PCE) is a stochastic spectral
method that allows for stochastically varying physical entities Y, as
a response of some random input ξ to be represented in terms of
orthogonal polynomials. PCE permits Y to be expanded into a
series of orthogonal polynomials of degree p (the expansion order)
as function of the input variables ξ.

Y =
N∑
i

aiΨi (ξ). (1)

The orthogonal polynomials can be the Hermite, Legendre,
Laguerre, or any other set of orthogonal polynomials, depending on
the probabilistic distribution of the random input variables ξ. The
physical entities Y include electromagnetic fields (with
uncertainties), particle positions, velocities, and spin vectors.



PCE: Expansion Coefficients

The expansion coefficients can be calculated using intrusive and
non-intrusive methods. Non-intrusive methods consider the
deterministic code as a black box, i.e., they do not alter the code
nor the equations. The expansion coefficients are calculated using
multiple calls to the deterministic code either via projection or
regression. Both require a number of N realization pairs (ξ,Y)
(see Eq. (1)).



PCE: Projection

Projection requires the evaluation of expectation values and relies
on the orthogonality of the polynomials to compute the coefficients
in the form of

a =
E {YΨ}
E {Ψ2}

. (2)

The computation of the expectation values (E{·}) necessitates the
evaluation of integrals. Quadrature methods are one way to do so,
and are commonly used in PCE analyses. Depending on the type
of input distribution, the corresponding quadrature rule can be
used. The Gauss-Laguerre quadrature for instance, is used in the
case of uniformly distributed random variables. It is widely known
as non-intrusive spectral projection (NISP).



PCE: Regression

Regression, estimates the coefficients that minimize the functional
difference between the estimated response Ŷ and the actual
response Y, given by

a = argmin

(
E
{
Ŷ − Y

}2
)

. (3)

The solution of Eq. (3), obtained by linear regression, yields

a =
(
ΨT ·Ψ

)
·Ψ · Y. (4)



Beam Tracking Simulations: Equation of Motion

The variational form of the beam and spin dynamic equations is
derived using the stochastic Galerkin projection. Neglecting forces
other than the electromagnetic ones acting on the charged
particles, the beam equations read

d

dt
v⃗ =

q

mγ

[
E⃗ + v⃗ × B⃗ − 1

c2
v⃗
(
v⃗ · E⃗

)]
, and

d

dt
r⃗ = v⃗ .

(5)

Here, E⃗ and B⃗ represent the electric and magnetic fields, and v⃗
denotes the velocity vector of the particles.



Beam Tracking Simulations: Equation of Motion
The expansion of Eq. (5) in Cartesian coordinates yields a linear
system of six coupled ordinary differential equations,

d

dt
vx =

q

m

[
1

γ
Ex +

1

γ
vyBz −

1

γ
vzBy −

1

c2γ
vx(v⃗ · E⃗ )

]
, (6a)

d

dt
vy =

q

m

[
1

γ
Ey +

1

γ
vzBx −

1

γ
vxBz −

1

c2γ
vy (v⃗ · E⃗ )

]
, (6b)

d

dt
vz =

q

m

[
1

γ
Ez +

1

γ
vxBy −

1

γ
vyBx −

1

c2γ
vz(v⃗ · E⃗ )

]
, and (6c)

d

dt
x = vx , (6d)

d

dt
y = vy , (6e)

d

dt
z = vz . (6f)

Here, v⃗ denotes the velocity vector of the particles, q the particle
charge, m the mass, γ the Lorentz factor, and r⃗ the position vector.



Equation of Motion: Variational Form

vx is expanded as

vx =
N∑
i

vx
(k)
i Ψi , (7)

where the vx
(k)
i are the chaos expansion coefficients. The

superscript (k) is used to identify the expansion coefficients, and
also to emphasize that the variables are discretized. The
coefficients are calculated according to

vx
(k)
i =

(
ΨT ·Ψ

)
·Ψ · vx 0

, (8)

where vx 0
are the initial x-components of the particle velocities.

Inserting Eq. (7) into the left-hand side of Eq. (6a), we find

d

dt
vx =

d

dt

N∑
i

vx
(k)
i Ψi =

N∑
i

d

dt
vx

(k)
i Ψi . (9)



Equation of Motion: Variational Form

The stochastic Galerkin projection is applied by multiplying
Eq. (9) with Ψl and taking the expectation value E{·}, which gives

E

{
N∑
i

d

dt
vx

(k)
i ΨiΨl

}
=

N∑
i

d

dt
vx

(k)
i E

{
ΨiΨl

}

=
N∑
i

d

dt
vx

(k)
i ⟨ΨiΨl⟩

=
N∑
i

d

dt
vx

(k)
i ⟨Ψ2

i ⟩δil .

(10)

Here δil is the Kronecker delta which results from the orthogonality
of the polynomials.



Equation of Motion: Variational Form

The electric field is also represented stochastically as by the finite
series

Ex =
N∑
i

ex
(k)
i Ψi . (11)

The Cartesian components of the electric and magnetic fields (E⃗
and B⃗) are functions of the position vector r⃗ , e.g., E⃗x (r⃗ ), B⃗x (r⃗ ),
etc. The dependence of the field components on position, e.g.,
E⃗x (r⃗ ) = E⃗x (x , y , z), does not pose a problem for the PCE method
as long as the input variables (e.g., r⃗ and v⃗) are independent



Equation of Motion: Variational Form

The Lorentz factor γ constitutes also a stochastic variable.
Unfortunately, it appears in the denominator of all terms in Eq. (5).
To solve this problem, 1/γ is expanded instead of γ. Let α be
defined as

α =
1

γ
, (12)

then α is expanded as

α =
N∑
i

α
(k)
i Ψi . (13)



Equation of Motion: Variational Form

The stochastic Galerkin projection is applied by multiplying the
product of Eqs. (11) and (13) by Ψk , and subsequently calculating
the expectation value E{·}. It thus follows that

E


N∑
i

ex
(k)
i Ψi

N∑
j

α
(k)
j ΨjΨl

 =
N∑
i

N∑
j

ex
(k)
i α

(k)
j ⟨ΨiΨjΨl⟩

=
N∑
i

N∑
j

α
(k)
i ex

(k)
j Cijl .

(14)

The Cijl = ⟨ΨiΨjΨl⟩ tensor constitutes a sparse rank-3 tensor.



Cijl Tensor

Cijl is a computationally CPU-extensive operation, but fortunately,
it needs to be computed only once. It can be stored and re-used
when required. Although the multiplications of the PCE
coefficients involve the Cijl term, this arithmetic operation does not
introduce any computational overhead as Cijl is sparse.

With the m = 5 dimensional problem and an expansion order of
p = 4, the number of basis functions is P = 126, which results in a
(126× 126× 126) Cijl tensor.



Equation of Motion: Variational Form

The next term of Eq. (6a), the product of α, velocity vy , and
magnetic field Bz presents a more complicated situation, because
it involves multiple polynomials

vy =
N∑
i

vy
(k)
i Ψi ,

Bz =
N∑
i

bz
(k)
i Ψi ,

(15)

where vy
(k)
i and bz

(k)
i are the expansion coefficients of vy and Bz ,

respectively. The multiplication of the three sums yields

αvyBz =
N∑
i

N∑
j

N∑
k

α
(k)
i vy

(k)
j bz

(k)
k ΨiΨjΨk . (16)



Equation of Motion: Variational Form
By applying the stochastic Galerkin projection to Eq. (16), it
follows that

E {αvyBzΨl} =
N∑
i

N∑
j

N∑
k

α
(k)
i vy

(k)
j bz

(k)
k ⟨ΨiΨjΨkΨl⟩

=
N∑
i

N∑
j

N∑
k

α
(k)
i vy

(k)
i bz

(k)
j Dijkl .

(17)

Dijkl is similar to Cijl , but it constitutes a rank-4 tensor.
The case for the third term of Eq. (6a) yields

E {αvzByΨk} =
N∑
i

N∑
j

N∑
k

α
(k)
i vz

(k)
j by

(k)
k ⟨ΨiΨjΨkΨl⟩

=
N∑
i

N∑
j

N∑
k

α
(k)
i vz

(k)
j by

(k)
k Dijkl .

(18)



Equation of Motion: Variational Form

The last term of the right hand side of Eq. (6a), i.e.,

1

c2
αvx

(
v⃗ · E⃗

)
(19)

is yet more complicated, because it involves a scalar product. The
scalar product operator multiplies the operands component-wise
before summing them up. These operands, however, are PC
coefficients. The corresponding multiplication is in fact a Galerkin
one, which involves a series of double products given by

v⃗ · E⃗ =
3∑
i

N∑
j

N∑
k

vi
(k)
j ei

(k)
k ΨjΨk . (20)



Equation of Motion: Variational Form
This means that Eq. (20) requires the stochastic Galerkin
projection to compute a rank-5 tensor, which makes the method
highly inefficient. In order to solve this problem, a
pseudo-spectral method is used. The Galerkin projection is
applied first to the auxiliary variable gl (the one representing the
scalar product), and then secondly to the full product in Eq. (19).
This way, the rank-4 tensor product, introduced above in Eq. (17),
can be used. In particular, gl reads

gl = E
{(

v⃗ · E⃗
)
Ψl

}
=

3∑
i

N∑
j

N∑
k

vi
(k)
j ei

(k)
k Cijl , (21)

where the subscript l here constitutes a free variable. And then, by
applying the stochastic Galerkin projection, it follows that

E
{
αvx

(
v⃗ · E⃗

)
Ψl

}
=

N∑
i

N∑
j

N∑
k

α
(k)
i vx

(k)
j g

(k)
k Dijkl . (22)



T-BMT equation
The spin dynamics in an electromagnetic storage ring with
non-vanishing EDM is described by the generalized T-BMT
equation which reads

d

dt
S⃗ =

(
Ω⃗MDM + Ω⃗EDM

)
× S⃗ . (23)

Here, S⃗ denotes the particle spin, and Ω⃗EDM and Ω⃗MDM are the
angular velocities associated with the magnetic (MDM) and
electric dipole moments (EDM). Ω⃗MDM and Ω⃗EDM are defined as

Ω⃗MDM =− q

mγ

[
(1 + Gγ) B⃗ +

(
Gγ +

γ

1 + γ

)
E⃗ × β⃗

c

− Gγ2

γ + 1
β⃗
(
β⃗ · B⃗

)]
,

Ω⃗EDM =− q

m

η

2

[
E⃗

c
+ β⃗ × B⃗ − γ

γ + 1
β⃗

(
β⃗ · E⃗

c

)]
.

(24)



T-BMT Equation: Variational Form
Rewriting, e.g., ΩMDM

y
(k)

i
in terms of the individual components, is

equivalent to the following expression

N∑
i

ΩMDM
y

(k)

i

=− q

m

[ N∑
i

∑
j

f1
(k)
i by

(k)
j Cijl

+
N∑
i

∑
j

∑
k

(
f2

(k)
i ez

(k)
i βx

(k)
j Dijkl − f2

(k)
i ex

(k)
i βz

(k)
j Dijkl

)

−
N∑
i

N∑
j

N∑
k

f3
(k)
i βy

(k)
j h

(k)
k Dijkl

]
,

(25)

where

hl = E
{(

β⃗ · B⃗
)
Ψl

}
=

3∑
i

N∑
j

N∑
k

βi
(k)
j bi

(k)
k Cijl . (26)

Here, l constitutes a dummy subscript [later on replaced by k in
Eq.(25)].



SGM Validation
At the final stage, the performance of the SGM must be evaluated
quantitatively, with the help of an adequate error analysis. Due to
time and position dependencies, the error calculation involves
either the mean value (µ) or the standard deviation (σ) of the
quantity under investigation, denoted in the following by ζ. The
corresponding errors are called ϵµ and ϵσ, respectively, and are
defined as

ϵµ(t) =

∣∣∣∣ ζ̄(t)− ¯̂
ζ(t)

ζ̄(t)

∣∣∣∣, and (27a)

ϵσ(t) =

∣∣∣∣σ[ζ(t)]− σ[ζ̂(t)]

σ[ζ(t)]

∣∣∣∣ . (27b)

Here, ζ may refer to either the position, velocity or spin vector,
while ζ̂ denotes the value estimated using the SGM. The exact
initial conditions are inserted into both the MC and the SGM
solver, so that the solutions can be directly compared on a
particle-by-particle basis.



SGM Validation

When the dynamics includes electromagnetic fields that are
functions of position, time, or frequency, the stochastic expansion
coefficients may evolve as a function of time, position, etc. This
adds another level of complexity that the SGM must be able to
cope with. As a consequence, the performance criterion in Eq. (27)
must be modified to account for position (or other) dependencies
as well,

ϵµ(z) =

∣∣∣∣ ζ̄(z)− ¯̂
ζ(z)

ζ̄(z)

∣∣∣∣, and (28a)

ϵσ(z) =

∣∣∣∣σ[ζ(z)]− σ[ζ̂(z)]

σ[ζ(z)]

∣∣∣∣. (28b)

Here, ζ may refer either to the position, velocity or spin
dependence, and ζ̂ constitutes the corresponding estimated value
using the SGM, similar to Eq. (27).



SGM Results



SGM Results



SGM Results



SGM Results
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SGM Results



SGM Results: Real Fields



SGM Results: Real Fields

0 200 400 600 800 1000
10

-15

10
-10

10
-5



SGM vs MC: Simulation Time
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Comparison of the simulation time required for the parallelized MC
and the stochastic Galerkin method (SGM). For particle numbers
below about 105, the methods are comparable. For larger particle
numbers with a constant expansion order of p = 4, the time
required for the SGM stays constant, while the demand for the MC
increases exponentially.


