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1. Motivation
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- Hierarchies of scale for phase transitions

2. High temperature dimensional reduction
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- Effectivekinetictheory
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What is our quest?

= bubble wall speed
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What is our quest?

O 4 oD 4+ 20 1 o)

The first few orders of a controlled expansion in some small

parameter,
ek 1,

with unique and well-defined coefficients v( n) , from first principles.
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A direct attack is difficult

Vv is contained in the time dependence of n-point functions,

(0= V")6(xx) = =3x = X) [ Nxy)6(r.X),
y
but these do not admit a simple perturbative expansion.

7777, /////
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The lattice is limited

® Real-time sign problem thwarts importance sampling,

(O(£)0(0)) = % [ Do o(0()e.

® Chiral fermions, like ¢, er, can't be simulated on a lattice.
Nielsen & Ninomiya '81
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Approach

Inspired by e.g. results using high-temperature dimensional
reduction,

PQcCD

a7 = PO T p2g” + p3g> + pag* + psg® + peg® + O(g").
a5

We'll explore effective field theory approaches.
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Hierarchies of scale for phase
transitions

7/51



A hierarchy problem
Let's assume there is some very massive particle x, M, > my,
coupled to the Standard Model Higgs ® like

& = Lou + g’ dToxx + 24,

If we integrate out x, we find that the Higgs mass parameter gets
a correction of the form

|

aryote =
~ g’ Moo .
Relevant operators in the IR get large contributions from the UV,

Am,%,wg2 M2
m,2_, my)
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Phase transitions

Ver(0)
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Phase transitions

Ver(0)

For there to be a phase transition, thermal/quantum fluctuations
should modify the potential at leading order,

Veff = Vtree + AVﬂuct'
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Hierarchies in phase transitions

So, for there to be a phase transition, we need

A Vet - N (/\fluct>0 rL 1
Viree Atree ’

where ¢ > 0 for relevant operators.
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Hierarchies in phase transitions

So, for there to be a phase transition, we need

A Vet - N (/\fluct>0 rL 1
Viree Atree ’

where ¢ > 0 for relevant operators.

= either:
(i) g2N > 1, i.e. strong coupling

(i) % ~ W > 1, i.e. scale hierarchy
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Hierarchies in phase transitions

So, for there to be a phase transition, we need

A Vet - N (/\fluct>0 rL 1
Viree Atree ’

where ¢ > 0 for relevant operators.

= either:
(i) g2N > 1, i.e. strong coupling

(i) % ~ W > 1, i.e. scale hierarchy

Perturbative phase transitions require scale hierarchies*

*There are some caveats.
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Infrared strong coupling

Infrared bosons are highly occupied; the effective expansion
parameter o grows

2 1 ~ 2T
Qeff ~ & eE/T—lNg E

Softer modes are classically occupied and more strongly coupled:

hard : E~aT = teg ~ g° ~ 0.03,
soft : E~gTl = an~g~0.18,
supersoft : E~ g3/2T = Qeff ~ g1/2 ~ 0.42,

ultrasoft : E~g?T = aeg ~g° ~ 1.
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UV and IR problems

There are two main difficulties
® large UV effects break loop
expansion
® |R becomes more strongly
coupled

large UV
effects

strong IR
coupling
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High-temperature dimensional
reduction
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Imaginary time formalism

® Thermodynamics Z = Tre=H/T formulated in R3 x st

/]

Semme”

N

M.

® Fields are expanded into Fourier modes:
d(x,7) = Z(b,,(x i(nmT)r

where n is even (odd) for bosons (fermions).
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Matsubara modes

Substituting in the Fourier expansion (here for a scalar),

d+1
1/T 1 —~—
/ dT/ [2 <D(X,T)(—V2 — 83 + m2)<b(x,7') =
0 X

1 Z/ (=2 + (07 T)? + m?)én(x)

n even

The masses of the Fourier modes are

m2 = (nnT)? + m?.
One can therefore view a thermal field theory in d + 1
dimensions as a Euclidean field theory in d dimensions

with infinitely many fields.
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A simple example
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Real scalar model
A simple model,

f—f( 0ud)? + 00+ d>2+ ¢3+ ¢4
+ Jl¢ + J2¢ ;
with only two relevant scales:

hard: E ~ 7T (nonzero Matsubara modes) VAVAVAVAYAVA

m? = m? 4 (nmT)? with n # 0

soft: E ~ gT (Debye screened) <« " \u

PN

2 ! \ 272
mefFN \\ ! Ng T

s
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Real scalar model

A simple model,

-i”—f( 0ud)’ + 0o+ ¢2+ ¢>3+ ¢“
+ Jl¢ + J2¢ ’
with only two scales: 7T, meg ~ gT.

e large UV effects (7T /mesr) ~ /g
® IR coupling s ~ g/m

no IR (gapped)

T+ TNeff
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Wilsonian EFT

® Split degrees of freedom {¢, x} based on energy —

A

® |ntegrate out the UV modes: T ¢uv, X

2o [Dresten = [Dog [ Dowpresont) 1
= /DQbIR e~ Seff[PR]
1 %R
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Resummations with EFT
By first integrating out the UV modes

Seff[¢|R] — Sd)[(blR] _ |0g/D¢UVDX e—5[¢IR+¢UV7X]+S¢[¢IR]’

~ Sy[PIr] +/

X

1
|:(Ueff —0)OR + §(m§ff - m2)¢|2R )

the daisy resummations arise naturally.

So do all other necessary resummations, order by order.

= Solves UV problems
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EFT factorisation

Contributions to physical quantities factorise

doesr -
= YANC
dlog T ‘<@,_/|R> ’
hard p soft modes
ard modes
= (A+Bg®+ 0(g")) x (a+ bg' + cg” + dg° + O(g")) -
hard modes soft modes

One must work harder for the soft modes,

2
_gT g
Qleff ~ ~

(47T)meff (47T) )
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Lattice vs perturbation theory: real scalar model

10714

103 102 10!

2 -2
Meg ~ Ao

AlpiR) =

1
{2+\/§aeff+*(l+2|ogﬂ3)o¢ﬁ
47 et 2

21,1 772 1 21 5 4
3 ligs — — — =+ Zlog® = log = ) a2
—&-\[( 8f§+ 27 ~ 18 +64 og 3+80g3>aeff

+0(a efF)}
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Some more complicated examples
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Standard Model-like example

A more complicated model with more scale hierarchies,
Lom C (D) (D, ) — 20T + \(dTd)2.
At leading order, the high-T potential is
Verr ~ %mg_f@z + %254-
This appears to have a 2" order transition as
Megr ~ —pi° + g2 T2 = 0.

Before this happens, a 3™ term comes to balance against these, as
a new scale appears:

supersoft: £ ~ g3/?T /\/7 (symmetry breaking) N\

1 Tg? A
Verr = §m§ff¢2 - EWP + Z¢4
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Supersoft scale EFT

Integrating out the scales 7T and g7 gives

L= Logtone + Tt Lg(@*@f” + 22 (plp)?
e 2 4(47) 4

l1gs dipldip 51 g . gyl

T84 (plp) 2 G4(am2” YR 2

After integrating out the scale 7T, the relevant diagrams are

x@g@@ o o

(a) LO

o ( )NNLO
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UV and IR in concert

For some observable O at T =0

Ov=_ A + Bg?> + Cg* + Dg% + Eg® + ...
~ ~— ~— ~— ~—

0-loop 1-loop 2-loop 3-loop 4-loop
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UV and IR in concert
For some observable O at T =0
Ov=_ A + Bg?> + Cg* + Dg% + Eg® + ...
~ ~— ~— ~— ~—
0-loop 1-loop 2-loop 3-loop 4-loop

At a Higgs-like first-order phase transition, instead

Or= _a_ + bgt + g%+ dg®> + eg®?+ fg° + ...
~ ~ =~ ~ =~ =~
1-loop™* 2-loop™ 1-loop’ 3-loop™ 3-loop! oo-loop

where * and T refer to different resummations of infinite classes of
diagrams.
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UV and IR in concert
For some observable O at T =0
Ov=_ A + Bg?> + Cg* + Dg% + Eg® + ...
~ ~— ~— ~— ~—
0-loop 1-loop 2-loop 3-loop 4-loop

At a Higgs-like first-order phase transition, instead

Or= _a_ + bgt + g%+ dg®> + eg®?+ fg° + ...
~ ~ =~ ~ =~ =~
1-loop™* 2-loop™ 1-loop’ 3-loop™ 3-loop! oo-loop

where * and T refer to different resummations of infinite classes of
diagrams.
A(dT D) 1 51

= 1+ ==x +13v2x3/2 2
2T 28mp2 | 2T W2+ 00|

where x = \3/g3 ~ g.
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Scalar triplet extension of the Standard Model

Let's also add a BSM SU(2)-triplet scalar, + 7T
a2 T ay-a
L = Zou + ZoTOEE
1 2 b gT
+2D,¥D, T + Lxyaya y M (yaya)e,
2 2 4
.93/2T
® large UV effects NG
® strongly coupled IR
g°T
™
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Scales in the free energy

Boltzmann: £E > T
hard: E~ T
semisoft: £~ ,/gT
soft: E ~ gT
supersoft: E ~ g3/2T
ultrasoft: £ ~ g2T

background

o E/T
T*(1+g°+g*+...)
T4g+g%%2+g%%+...)
THe*+e*+g'+...)
T +g* +8”7+...)

THg%+g%+g%+...)

(typically considered)
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Lattice versus perturbation theory

lattice versus loop expansion lattice versus EFT expansion

6 6
%, == 0(0%)/T %o, == 2(4?)/T

N, =T | ] W, - )T

. .
4 ‘e . 4 See .

... .'l
3 L 3 e,
.‘ .~

w
0 ,
Vv?vvvvvvvvvvvvvvvv'oooo.oooo. .

90 95 100 105 110 115 120 125 130 135 90 95 100 105 110 115 120 125 130 135
T (GeV) T (GeV)

Scalar triplet extension of Standard Model,
by
4

Niemi et al. 2005.11332, OG & Tenkanen forthcoming

1 2
L = Lo+ %qﬂcbzaza + 50,70, + %zaza + 2 (xzaxay?
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Convergence and scales

LO NLO NNLO

(2T |,
= ()T ..

90 100 110 120 130 90 130 90 100 110 120 130

T (GeV)

Figure: Assuming the scalars lie at the soft scale gT.

LO NLO NNLO

= 2e%)/T

4
e
2
v,
s,

L ‘ e
0 trerzryy . i
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T (GeV) T (GeV) T (GeV)

Figure: Assuming the scalars lie at the supersoft scale g3/2T / /7.

Niemi et al. 2005.11332, OG & Tenkanen forthcoming
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Real-time effective theories
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Scale hierarchies in real time

(0}
|p|l ’

4

0 p|

More possible scale hierarchies:
* |p%[p| < A
* lp| <A [p°] ~A
o % <A, |p| ~ A
* [1P° = Ipll < A, 1% [p| ~ A
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Outline bubble wall speed computation

thermal scale

i effective kinetic theory

bubble

al

scale

ieffective classical field

T

E wall speed

T

Meff
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Hard thermal loops

33/51



Real-time Wilsonian effective actions

Consider our Euclidean effective action from earlier,

Seft[PIR] = Sgl¢r] — |0g/D¢UvDX e~ SRt ouvxtS4ldre]

How can we generalise this to real-time?
e consider soft external modes: |p°|, |p| ~ gT
® Integrate over hard internal loops ky, |k| ~ 7T

® Taylor expand final result in soft quantities.
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Quantum thermal evolution

Imt A

to t

Y

\J/

Sl

(O(t)0(0))qm = %Tr {e*’:’/T (e”:’t(’)(O)e*"Ht) (’)(0)}
- /C DeO(£)0(0)e’S1¥)
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Classicalisation

® Bose enhancement of IR modes
1
ms(E) = 77

T
— 1.
E >

Q

® Dynamics of QFT at nucleation
scale (Anuca << T) expected to be
quasi-classical.

"Anucl

Figure: Nucleation scale
much lower than thermal
scale.
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Classical thermal evolution

To determine real-time correlation functions,

é(nx) = {Qs(t?X)? H}7
7(t,x) = {n(t,x), H},

(0(0.4)6052))a = 5 [ DIDT(0,x)0(0,0)e Mo,

UV catastrophe - the cut-off scale dominates everything!
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Quantum versus classical

® Using counterterms from dimensional reduction, e.g. in g32q54

g5

2 _
oms = 24(47)2e

cancels classical UV catastrophe, giving finite result.

® Moreover, the finite classical and quantum remainders agree!

(p(t1, x1)@(t2, x2)) el = ({&(t1, x1), (L2, X2) })gm

N.B. in the classical evolution equations, the relevant
potential is the tree-level potential for the EFT.
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1 1 1
Hefr = /d3X [57?2 + §(ai¢)2 + Oeffd + E(mgff + 5mZg)” +

—20 -

—40 -

—80 -

—ap -

Benchmarking against the lattice

Nucleation rate (volume averaged), ¢:-0.015, m?:-0.081

Bounce action
Bounce + fluc det
Nx:24.0, a:1.5
Nx:26.0, a:1.5
Nx:28.0, a:1.5
Nx:30.0, a:1.5

| | | | | | | |
92.0 92.2 92.4 92.6 92.8 93.0 93.2 93.4
T

2
8eff
41

¢4

OG, Kormu & Weir (forthcoming), Moore, Rummukainen & Tranberg '01
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Soft gauge fields

The above strategy is more complicated for gauge fields:

® Thermal initial conditions are as before, based on the 3d EFT.

® But the evolution equations in the classical limit become
nonlocal, here shown for the Abelian-Higgs model,

3 47 v -0
D,D"¢ = —m7¢ — 2X\(¢" $)p.

2T2 dQv v, .
g, F = € / VY Ei 4 2ie(¢*D"é — 6DV "),
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Recent developments in hard-thermal loops

The hard-thermal loop effective theory for gauge fields (here shown
for QED)

O F' =T"A,,
has been recently extended to NLO,

272
ey TS [d T, ko
Nio(K) = 3 /47r [nn +VV7V‘K ,

472 0)2 0
v _ T dQ, [, [ (k) 2k
Mo (K) = 872 / 4rr {V Y (v-K)? v-K

v v ko v
+ [v¥n +n“v]7—n”n .
V.
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Langevin equations
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Influence functional

Split the field based on spatial momentum

&(t,p) = O(A — |p))®(t,p) +0(Ip| — N)®(t,p),

dRr dyy

and integrate over the UV modes,
/D¢D¢/piei(5[¢]5[¢’])

_ / DORDG|g i,/ (STORI-SIORI S0 0fs]).

The influence functional S gives the effect of the UV modes, in
the in-in formalism.
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Complex influence functionals

In general the evolution of the IR modes is nonunitary

ei(s[d)lR]_5[¢|/R]+RESIF[¢IR7¢|/R]) % e_ImSIF[cDIqu)fR]‘
This complicates the naive semiclassical limit,

(5 .
5o PRI+ ReSF[®r, ir] + IIMSiE[®R, Blg]) = 0 777
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Stochastic semiclassical limit

A possible solution is to introduce new stochastic variables, e.g.

e_ImSIF[¢IR7 | S e — ORIy ¢|R

1o7—1 . -
— Dxefgx'fz 'Xe’X'¢IR7
\/detI /

where a- M- b= [ fy a(x)M(x,y)b(y). The effective action for
®|r is then real.

The semiclassical equations of motion become Langevin,

Re5|F[d>|R, (DIR]

X()x(v)) = Za(x, ).

o
OR|+ —
S[PiRr] 5

SO O
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Effective stochastic \¢*

Explicitly, for the A¢* theory,

—|:|¢|R(X) + m2¢|R(x) + A¢|R(X)3+ / d4yReF(2)(x — y)¢|R(y)

=x(x)+...

where the stochastic variable satisfies

(XCIX()) = ImTB(x — y),

and where T'®) is the UV contribution to the IR self-energy. Here
we have made an expansion in powers of ¢r.
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Time evolution of ultrasoft gauge bosons

Starting from HTLs for gauge fields, one can integrate out the soft
scale, to arrive at an effective theory for the ultrasoft scale.

< U \u soft: E~gT

_ ultrasoft: E ~ g?T /7

To leading-log order the result is first-order Langevin,

553
T5Az

(Do) = +&

where S3 is the Euclidean action of the 3d EFT, v ~ log(1/g)/ T
is the colour damping, and &; is a Gaussian noise satisfying

(€7 (£,x)EP (u,y)) = 290;67°0(x — y)3(t — u).
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Time evolution of gauge-Higgs system

For gauge-Higgs theory, the coupled Langevin equations read

053

(D:Aj)? = *’Y(M?

+ &7
053
Dip = —ny—
0= —mgsr + e
where the Higgs noise terms satisfies

(€(t, X)L (u,y)) = 2nyL3(x — y)o(t — u),

with p ~ 1/g% > 1, so that the Higgs evolves faster.
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Gauge-Higgs coupled dynamics

® Gauge-Higgs Langevin system tightly coupled.

® Even updating the Higgs infinitely fast, the system gets stuck.

I
0 1000 2000 3000

Number of Higgs updates

4000

dynamical

prefactor

0.025
0.020
0.015
0010

0.005

x = 0.0152473, ag3 ~ 30/55
§  y=002602457
1 ¥ y = 0.030362
[ 3 y=003169913
RN
g
102 0t
1/n
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Smoothed 10 times

¥

"
@
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» ‘s %
- v %

£y

Early-time bubble dynamics

2

06 ~100 —50 0

5 update steps

https://zenodo.org/record/6548608
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Conclusions
Goal is a controlled expansion,

@ = v e + 2P + 0(e%)

EFT can give accurate T, L/ T*
Also for T, a, and 3/H, (see Joonas's talk)

Real-time physics has different EFTs in different regimes:

- Hard-thermal loops
- Langevin equations
- Effective kinetic theory

Recently developments to higher orders

51/51



Conclusions

Goal is a controlled expansion,

@ v 4P+ 2P+ o(?)

EFT can give accurate T, L/ T*
Also for T, a, and 3/H, (see Joonas's talk)

Real-time physics has different EFTs in different regimes:

- Hard-thermal loops
- Langevin equations
- Effective kinetic theory

Recently developments to higher orders

Thanks for listening!
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