

How fast does the bubble grow

Pressure on the bubble wall in the relativistic regime

Miguel Vanvlasselaer miguel.vanvlasselaer@vub.be

May 2023

• Pressure on the bubble wall in the relativistic regime

• Pressure on the bubble wall in the relativistic regime

• EWBG from ultra-relativistic walls

• Pressure on the bubble wall in the relativistic regime

• EWBG from ultra-relativistic walls

• How tuned is EWPT with relativistic walls ?

• Pressure on the bubble wall in the relativistic regime

• EWBG from ultra-relativistic walls

• How tuned is EWPT with relativistic walls ?

• A closer look at NLO pressure: longitudinals

• Pressure on the bubble wall in the relativistic regime

• EWBG from ultra-relativistic walls

• How tuned is EWPT with relativistic walls ?

• A closer look at NLO pressure: longitudinals

Phase transitions in the early universe

Phase transitions in the early universe

Pressure on the bubble wall in the relativistic regime

Pressure on the bubble wall in the relativistic regime

FOPT and bubbles

Figure: Credit: Giulio Barni, thanks to him

ultra-relativistic limit:

$$v_w \to c, \qquad \gamma_{wp} \equiv \frac{1}{\sqrt{1 - v_w^2}}$$

 $\Delta V = \Delta \mathcal{P}(\gamma = \gamma^{MAX})$

77

(velocity)

FOPT: Why do we even bother?

Bubbles can produce a stochastic GW background from

FOPT: Why do we even bother?

Bubbles can produce a stochastic GW background from

Primordial GWs could be observed soon (if they exist and/or if we will be able)!

Velocity

Final velocity
$$\gamma^{MAX} = \frac{1}{\sqrt{1 - v_{MAX}^2}}$$
 of the wall set by
 $\Delta V = \Delta \mathcal{P}(\gamma^{MAX}) \Rightarrow \text{determination } \gamma^{MAX}$

• ΔV independent of the velocity of the wall

Velocity

Final velocity
$$\gamma^{MAX} = \frac{1}{\sqrt{1-v_{MAX}^2}}$$
 of the wall set by

$$\Delta V = \Delta \mathcal{P}(\gamma^{MAX}) \qquad \Rightarrow \qquad \text{determination } \gamma^{MAX}$$

- ΔV independent of the velocity of the wall
- $\Delta \mathcal{P}(\gamma^{MAX})$ very difficult to compute in general and depends on the velocity

Velocity

Final velocity
$$\gamma^{MAX} = \frac{1}{\sqrt{1-v_{MAX}^2}}$$
 of the wall set by

$$\Delta V = \Delta \mathcal{P}(\gamma^{MAX}) \qquad \Rightarrow \qquad \text{determination } \gamma^{MAX}$$

- ΔV independent of the velocity of the wall
- $\Delta \mathcal{P}(\gamma^{MAX})$ very difficult to compute in general and depends on the velocity
- Generic method: solve the full coupled system of Boltzmann equations

$$p^{\mu}\partial_{\mu}f_{i} + \frac{1}{2}\partial_{z}m_{i}[\phi]\partial_{p_{z}}f_{i} = \mathcal{C}[f_{i},\phi]$$
$$\mathbf{d}\phi + \frac{dV}{d\phi} + \sum_{i}\frac{dm_{i}^{2}[\phi]}{d\phi}\int \frac{d^{3}p}{(2\pi)^{3}}\frac{1}{2E_{i}}f_{i} = 0$$

How to solve that ? Several simplification regime

• Expansion in perturbations (Original approach by Prokopec-Moore arXiv:hep-ph/9503296).

$$f_i = f_i^{\rm eq} + \delta f_i, \qquad f_i^{\rm eq} \gg \delta f_i$$

Solve order by order. Valid for *slow* walls!

How to solve that ? Several simplification regime

• Expansion in perturbations (Original approach by Prokopec-Moore arXiv:hep-ph/9503296).

$$f_i = f_i^{\text{eq}} + \delta f_i, \qquad f_i^{\text{eq}} \gg \delta f_i$$

Solve order by order. Valid for *slow* walls!

• Assume Local thermal equilibrium (Mancha-Prokopec-Swiezewska arXiv:2005.10875)

How to solve that ? Several simplification regime

Expansion in perturbations (Original approach by Prokopec-Moore arXiv:hep-ph/9503296). •

$$f_i = f_i^{\text{eq}} + \delta f_i, \qquad f_i^{\text{eq}} \gg \delta f_i$$

Solve order by order. Valid for slow walls!

Assume Local thermal equilibrium (Mancha-Prokopec-Swiezewska arXiv:2005.10875)

$$\mathsf{LARGE} \ \mathcal{C}(g) \quad \Rightarrow \quad \Gamma_{scat} \gg \gamma v / L_w \quad \Rightarrow \qquad \boxed{f_i \to f_i^{\mathrm{eq}}}$$
Conservation of $T_{\mathrm{tot}}^{\mu\nu} = T_p^{\mu\nu} + T_{\phi}^{\mu\nu}$:
$$\boxed{\Delta \mathcal{P} = (\gamma^2 - 1)\Delta(Ts)}$$
Ballictic regime $\mathcal{C} \to 0$:

Ballistic regime $\mathcal{C} \to 0$: ٠

$$\begin{array}{ccc} \mathsf{SMALL} \ \mathcal{C} & \Rightarrow & \Gamma_{scat}(g) \ll \gamma v / L_w & \Rightarrow & f_i^{\mathrm{eq}} \ll \delta f_i \\ \\ \hline \mathcal{P} = \int \frac{p_z d^3 p}{p_0 (2\pi)^3} f_A(p) \times \sum_X \int dP_{A \to X}(p_A^z - p_X^z) \end{array}$$

How monotonic is the pressure increase ?

Figure: Espinosa et al arXiv:1004.4187

Figure: Garcia, Koszegi and Petrossian arXiv:2212.10572

Figure: Cline et al. arXiv:2102.12490

Pressure from 1 to 1 Bodeker-Moore [0903.4099]

Pressure from 1 to 1 Bodeker-Moore [0903.4099]

•
$$\mathcal{P} = \underbrace{\int \frac{p_z d^3 p}{p_0 (2\pi)^3} f_A(p)}_{\propto \gamma_w T^3} \times \sum_X \int \underbrace{\frac{dP_{A \to X}}{T \to 1}}_{T \to 1} \underbrace{\underbrace{(p_A^z - p_X^z)}_{\propto v^2/T \gamma_w}}_{\infty v^2/T \gamma_w}$$

•
$$1 \rightarrow 1, A = X$$
 with $m_h > m_s$:

$$\mathcal{C} \to 0 \quad \Rightarrow \frac{dE}{dz} = 0, \qquad E = \sqrt{p_{\perp}^2 + p_z^2 + m^2(z)}$$

Pressure from 1 to 1 Bodeker-Moore [0903.4099]

•
$$\mathcal{P} = \underbrace{\int \frac{p_z d^3 p}{p_0(2\pi)^3} f_A(p)}_{\propto \gamma_w T^3} \times \sum_X \int \underbrace{\frac{dP_{A \to X}}{T \to 1}}_{T \to 1} \underbrace{(p_A^z - p_X^z)}_{\propto v^2/T \gamma_w}$$

•
$$1 \rightarrow 1, A = X$$
 with $m_h > m_s$:

$$\mathcal{C} \to 0 \quad \Rightarrow \frac{dE}{dz} = 0, \qquad E = \sqrt{p_{\perp}^2 + p_z^2 + m^2(z)}$$

• LO relativistic pressure :

$$\int dP_{A \to A} \to 1, \qquad (p_h^z - p_s^z) \approx -\frac{\Delta m_i^2}{2E}$$
$$\Rightarrow \boxed{\mathcal{P}_{1 \to 1} \to \sum_i \frac{\Delta m_i^2 T^2}{24}}, \quad \Delta m_i^2 \equiv m_{h,i}^2 - m_{s,i}^2$$

• Intermediary regime: reflected, transmitted and back-transmitted species:

$$\mathcal{P} = \mathcal{P}^r + \mathcal{P}^{t_+} + \mathcal{P}^{t_-}$$

• Intermediary regime: reflected, transmitted and back-transmitted species:

$$\mathcal{P} = \mathcal{P}^r + \mathcal{P}^{t_+} + \mathcal{P}^{t_-}$$

• for
$$\gamma T = M/2 \Rightarrow \mathcal{P}_z^r \approx \mathcal{P}_z^{t_+} \approx 0.5 \times \mathcal{P}_{\gamma \to \infty}$$

 Intermediary regime: reflected, transmitted and back-transmitted species:

$$\mathcal{P} = \mathcal{P}^r + \mathcal{P}^{t_+} + \mathcal{P}^{t_-}$$

- for $\gamma T = M/2 \Rightarrow \mathcal{P}_z^r \approx \mathcal{P}_z^{t+} \approx 0.5 \times \mathcal{P}_{\gamma \to \infty}$ for $\gamma T = 2M \Rightarrow \mathcal{P}_z^{t+} \approx 1 \times \mathcal{P}_{\gamma \to \infty}$.

 Intermediary regime: reflected, transmitted and back-transmitted species:

$$\mathcal{P} = \mathcal{P}^r + \mathcal{P}^{t_+} + \mathcal{P}^{t_-}$$

- for $\gamma T = M/2 \Rightarrow \mathcal{P}_z^r \approx \mathcal{P}_z^{t+} \approx 0.5 \times \mathcal{P}_{\gamma \to \infty}$ for $\gamma T = 2M \Rightarrow \mathcal{P}_z^{t+} \approx 1 \times \mathcal{P}_{\gamma \to \infty}$.
- Relativistic condition

$$\Delta V > \mathcal{P}_{\gamma \to \infty} = \sum_{i} \frac{\Delta m_i^2 T^2}{24} \quad \Rightarrow \quad \gamma \gg 1$$

• Intermediary regime: reflected, transmitted and back-transmitted species:

$$\mathcal{P} = \mathcal{P}^r + \mathcal{P}^{t_+} + \mathcal{P}^{t_-}$$

what dominates ?

- for $\gamma T = M/2 \Rightarrow \mathcal{P}_z^r \approx \mathcal{P}_z^{t_+} \approx 0.5 \times \mathcal{P}_{\gamma \to \infty}$
- for $\gamma T = 2M \Rightarrow \mathcal{P}_z^{t_+} \approx 1 \times \mathcal{P}_{\gamma \to \infty}.$
- Relativistic condition

$$\Delta V > \mathcal{P}_{\gamma \to \infty} = \sum_{i} \frac{\Delta m_i^2 T^2}{24} \quad \Rightarrow \quad \gamma \gg 1$$

$$\gamma \propto \frac{R}{R_{\text{initial}}} \qquad \Rightarrow \qquad \gamma \to \frac{v}{H} \sim \frac{M_{pl}}{v}??$$

Miguel Vanvlasselaer

Scale of the transition and particles involved

Scale of the transition and particles involved

- ϕ scalar, χ light, N heavy: $\mathcal{L}_{int} = Y \phi \bar{\chi} N + M \bar{N} N$, $M \gg T_{nuc}$
- $\chi \to N$ transition: $p_{\chi} = (E, 0, 0, E)$ $p_N = (E, 0, 0, \sqrt{E^2 M^2})$

Scale of the transition and particles involved

Scale of the transition and particles involved

Scale of the transition and particles involved

Can heavy particles with $M\gg v$ be involved in the dynamics of the PT ?

• ϕ scalar, χ light, N heavy: $\mathcal{L}_{int} = Y\phi\bar{\chi}N + M\bar{N}N, \quad M \gg T_{nuc}$ • $\chi \to N$ transition: $p_{\chi} = (E, 0, 0, E) \quad p_N = (E, 0, 0, \sqrt{E^2 - M^2})$ • Conservation of momentum: *Origins*

No wall:
$$\int d^4x e^{ip \cdot x} \propto (2\pi)^4 \delta^4(p), \quad p = p_N - p_\chi$$

• When no wall and $\langle \phi \rangle = v_{\phi}$: $\chi \to N$ forbidden • With wall: $p^z = p_N^z - p_{\chi}^z$ not conserved: if E > M, $\chi \to N$ allowed

$$\int d^3x_{\perp} e^{ip_{\perp} \cdot x_{\perp}} \int \langle \phi \rangle(z) e^{izp_z} dz \propto (2\pi)^3 \delta^3(p_{\perp}) \frac{\sin \Delta p_z L_w}{\Delta p_z L_w}$$

• In the wall frame: $E_{\chi} \sim p_{\chi} \sim \gamma_w T_{
m nuc} \gg v_{\phi}$

- In the wall frame: $E_\chi \sim p_\chi \sim \gamma_w T_{
 m nuc} \gg v_\phi$
- Follow the steps of Bodeker-Moore [1703.08215]

$$\mathcal{M}\approx \int dz e^{ip_z^\psi z} e^{-ip_z^N z} V(z) = \int dz e^{i\Delta p_z z} Y \langle \phi \rangle(z)$$

- In the wall frame: $E_{\chi} \sim p_{\chi} \sim \gamma_w T_{
 m nuc} \gg v_{\phi}$
- Follow the steps of Bodeker-Moore [1703.08215]

$$\mathcal{M} \approx \int dz e^{i p_z^{\psi} z} e^{-i p_z^N z} V(z) = \int dz e^{i \Delta p_z z} Y \langle \phi \rangle(z)$$

•
$$|\mathcal{M}|^2 \approx Y^2 v_{\phi}^2 \times \frac{E_{\chi}}{\Delta p_z} \left(\frac{\sin \Delta p_z L_w}{\Delta p_z L_w}\right)^2 \qquad \Delta p_z \to \frac{M^2}{2E}$$

•

Production of heavy states via mixing [2010.02590]: computation

- In the wall frame: $E_{\chi} \sim p_{\chi} \sim \gamma_w T_{\rm nuc} \gg v_{\phi}$
- Follow the steps of Bodeker-Moore [1703.08215]

$$\mathcal{M} \approx \int dz e^{i p_z^{\psi} z} e^{-i p_z^N z} V(z) = \int dz e^{i \Delta p_z z} Y \langle \phi \rangle(z)$$

•
$$|\mathcal{M}|^2 \approx Y^2 v_{\phi}^2 \times \frac{E_{\chi}}{\Delta p_z} \left(\frac{\sin \Delta p_z L_w}{\Delta p_z L_w}\right)^2 \qquad \Delta p_z \to \frac{M^2}{2E}$$

$$\mathcal{P}(\chi \to N) \approx -\theta^2 \times \Theta(\gamma_w T_{\text{nuc}} - M^2 L_w), \qquad \theta \equiv \frac{Y v_\phi}{M}$$

- In the wall frame: $E_\chi \sim p_\chi \sim \gamma_w T_{
 m nuc} \gg v_\phi$
- Follow the steps of Bodeker-Moore [1703.08215]

$$\mathcal{M} \approx \int dz e^{i p_z^{\psi} z} e^{-i p_z^N z} V(z) = \int dz e^{i \Delta p_z z} Y \langle \phi \rangle(z)$$

•
$$|\mathcal{M}|^2 \approx Y^2 v_{\phi}^2 \times \frac{E_{\chi}}{\Delta p_z} \left(\frac{\sin \Delta p_z L_w}{\Delta p_z L_w}\right)^2 \qquad \Delta p_z \to \frac{M^2}{2E}$$

$$\mathcal{P}(\chi \to N) \approx -\theta^2 \times \Theta(\gamma_w T_{\rm nuc} - M^2 L_w), \qquad \theta \equiv \frac{Y v_\phi}{M}$$

 Cosmological consequences: 1) Pressure on the bubble wall [2010.02590], 2) Non-thermal DM (1 to 2 splittings) [2101.05721] with Wen Yin, 3) Baryogenesis [arXiv:2106.14913] with Wen Yin ...
• Toy model; $\mathcal{L}_{int} = Y\phi\bar{\chi}N + M_N\bar{N}N, \quad M_N \gg T_{nuc}$

- Toy model; $\mathcal{L}_{int} = Y \phi \bar{\chi} N + M_N \bar{N} N$, $M_N \gg T_{nuc}$
- Probability of transition

$$\Delta P_{\chi \to N} \sim \frac{Y^2 v^2}{M_N^2}, \qquad \langle \phi \rangle \equiv v$$

- Toy model; $\mathcal{L}_{int} = Y \phi \bar{\chi} N + M_N \bar{N} N$, $M_N \gg T_{nuc}$
- Probability of transition

- Toy model; $\mathcal{L}_{int} = Y \phi \bar{\chi} N + M_N \bar{N} N$, $M_N \gg T_{nuc}$
- Probability of transition

- Toy model; $\mathcal{L}_{int} = Y \phi \bar{\chi} N + M_N \bar{N} N$, $M_N \gg T_{\text{nuc}}$
- Probability of transition

Pressure depends on M only in the Θ -function

T_{our}

χ

Mixing pressure

 \bullet Assume PT breaking gauge symmetry with gauge bosons V

- \bullet Assume PT breaking gauge symmetry with gauge bosons V
- $\bullet~\mbox{Use}~\mbox{WKB}$ for phases

$$\chi_{\psi}(z)\chi_{A}^{*}(z)\chi_{\psi}^{*}(z) \sim \exp i \Big[\int_{0}^{z} \big(\frac{m_{\psi}^{2}(z)}{2p_{0}} - \frac{m_{V}^{2}(z) + k_{\perp}^{2}}{2xp_{0}} - \frac{m_{\psi}^{2}(z) + k_{\perp}^{2}}{2(1-x)p_{0}} \big) \Big].$$

T_{nuc}

T_{reh}

- \bullet Assume PT breaking gauge symmetry with gauge bosons V
- Use WKB for phases

T_{nuc}

I_{reh}

- \bullet Assume PT breaking gauge symmetry with gauge bosons V
- Use WKB for phases

T_{nuc}

I_{reh}

- \bullet Assume PT breaking gauge symmetry with gauge bosons V
- Use WKB for phases

T_{nuc}

I_{reh}

•
$$\mathcal{P}_{\psi \to A\psi} \simeq \int \frac{d^3p}{p_0(2\pi)^6} f_p \int \underbrace{\frac{dx}{x^2}}_{x^2} \int \underbrace{\frac{d^2k_{\perp}}{k_{\perp}^2 + m_V^{s^2}}}_{k_{\perp}^2 + m_V^{s^2}} \frac{\Delta m_V^4}{(k_{\perp}^2 + m_V^{h^2})}$$

• $k_z = \sqrt{x^2 p_0^2 - k_{\perp}^2 - m_V^2 - \Pi_V}$,
 $x_{\rm m} = m_V/p_0, \quad m_V^s = \sqrt{\Pi_V}$

$$(1+4)\int \frac{d^3p}{p_0(2\pi)^6} f_p \pi m_V^2 \log(m_V^2/(eT)^2) \times \left[\int \frac{dx}{x^2} = \frac{p_0}{m_V}\right]$$

•
$$\mathcal{P}_{\psi \to A\psi} \simeq \int \frac{d^3 p}{p_0(2\pi)^6} f_p \int \underbrace{\frac{dx}{x^2}}_{x^2} \int \underbrace{\frac{d^2 k_{\perp}}{k_{\perp}^2 + m_V^{s^2}}}_{k_{\perp}^2 + m_V^{s^2}} \frac{\Delta m_V^4}{(k_{\perp}^2 + m_V^{h^2})}$$

• $k_z = \sqrt{x^2 p_0^2 - k_{\perp}^2 - m_V^2 - \Pi_V}$,
 $x_{\rm m} = m_V / p_0, \quad m_V^s = \sqrt{\Pi_V}$

$$(1+4)\int \frac{d^3p}{p_0(2\pi)^6} f_p \pi m_V^2 \log(m_V^2/(eT)^2) \times \left[\int \frac{dx}{x^2} = \frac{p_0}{m_V}\right]^2$$

• Soft bosons emission: $\langle \Delta p_z \rangle \sim m_V$ Saturate bound $\Delta p_z L_w \approx \Delta p_z/v < 1$

•
$$\mathcal{P}_{\psi \to A\psi} \simeq \int \frac{d^3p}{p_0(2\pi)^6} f_p \int \underbrace{\frac{dx}{dx}}_{x^2} \int \underbrace{\frac{d^2k_{\perp}}{k_{\perp}^2 + m_V^{s^2}}}_{k_{\perp}^2 + m_V^{s^2}} \frac{\Delta m_V^4}{(k_{\perp}^2 + m_V^{h^2})}$$

• $k_z = \sqrt{x^2 p_0^2 - k_{\perp}^2 - m_V^2 - \Pi_V}$,
 $x_{\rm m} = m_V/p_0, \quad m_V^s = \sqrt{\Pi_V}$

$$(1+4)\int \frac{d^3p}{p_0(2\pi)^6} f_p \pi m_V^2 \log(m_V^2/(eT)^2) \times \left[\int \frac{dx}{x^2} = \frac{p_0}{m_V}\right]$$

- Soft bosons emission: $\langle \Delta p_z \rangle \sim m_V$ Saturate bound $\Delta p_z L_w \approx \Delta p_z/v < 1$
- Pressure induced

$$\Rightarrow \boxed{\mathcal{P}_{1\to 2} \sim 5\sum_{i} g_i \frac{g^3 v}{8\pi^2} \gamma T^3 \log \frac{m_V}{\sqrt{\Pi_V}}}$$

 $k_{\perp}^{\rm m} = \sqrt{\Pi_V}$

Pressure by splitting Bodeker-Moore [1703.08215]: Remarks

• Plasma effects screen colinearity Azatov, MV[2010.02590]:

• Plasma effects screen colinearity Azatov, MV[2010.02590]:

$$k_{\perp}^{\rm m} = \sqrt{\Pi_V}$$

• Width wall effects bound Δp_z Azatov, MV[2010.02590] :

• Plasma effects screen colinearity Azatov, MV[2010.02590]:

$$k_{\perp}^{\rm m} = \sqrt{\Pi_V}$$

• Width wall effects bound Δp_z Azatov, MV[2010.02590] :

 $\Delta p_z \lesssim v$

• $1 \rightarrow N$?? Turner, Long, Wang[arXiv:2007.10343]

$$\mathcal{P}_{1 \to N} \sim \underbrace{\mathsf{Flux}}_{\gamma_w T^3} \times \underbrace{\langle \Delta p_z \rangle}_{\gamma_w T} \underbrace{\times P_{1 \to N \text{gluons}}}_{\alpha_s} \sim \gamma_w^2 \alpha_s T^4$$

• Plasma effects screen colinearity Azatov, MV[2010.02590]:

$$k_{\perp}^{\rm m} = \sqrt{\Pi_V}$$

• Width wall effects bound Δp_z Azatov, MV[2010.02590] :

 $\Delta p_z \lesssim v$

• $1 \rightarrow N$?? Turner, Long, Wang[arXiv:2007.10343]

$$\mathcal{P}_{1 \to N} \sim \underbrace{\mathsf{Flux}}_{\gamma_w T^3} \times \underbrace{\langle \Delta p_z \rangle}_{\gamma_w T} \underbrace{\times P_{1 \to N \text{gluons}}}_{\alpha_s} \sim \frac{\gamma_w^2 \alpha_s T^4}{\gamma_w^2 \alpha_s T^4}$$

• However
$$\langle \Delta p_z \rangle \sim \gamma_w T \gg v, \quad k_\perp^{\rm m} \ll \sqrt{\Pi_V}, \quad \propto \alpha_s$$

• Plasma effects screen colinearity Azatov, MV[2010.02590]:

$$k_{\perp}^{\rm m} = \sqrt{\Pi_V}$$

 \bullet Width wall effects bound Δp_z Azatov, MV[2010.02590] :

 $\Delta p_z \lesssim v$

• $1 \rightarrow N$?? Turner, Long, Wang[arXiv:2007.10343]

$$\mathcal{P}_{1 \to N} \sim \underbrace{\mathsf{Flux}}_{\gamma_w T^3} \times \underbrace{\langle \Delta p_z \rangle}_{\gamma_w T} \underbrace{\times P_{1 \to N \, \mathsf{gluons}}}_{\alpha_s} \sim \gamma_w^2 \alpha_s T^4$$

- However $\langle \Delta p_z \rangle \sim \gamma_w T \gg v$, $k_{\perp}^{\rm m} \ll \sqrt{\Pi_V}$, $\propto \alpha_s$
- Sala, Jinno, Gouttenoire[arXiv:2112.07686]: $\mathcal{P}_{1 \to N} \approx \mathcal{P}_{1 \to 2} \times \log \frac{v}{T}$ [arXiv:2007.10343]: incorrect application of Ward identities

• Assume Dark photon V with mass m_V in the plasma

- Assume Dark photon V with mass m_V in the plasma
- Operator $\kappa \phi^2 V_\mu V^\mu$ modifies the mass of $\Delta m_V \ll m_V, \kappa \ll 1$.

- Assume Dark photon V with mass m_V in the plasma
- Operator $\kappa \phi^2 V_\mu V^\mu$ modifies the mass of $\Delta m_V \ll m_V, \kappa \ll 1$.
- $\mathcal{P} \sim \mathsf{Flux} \times \frac{1}{3} \sum_{\mathrm{pol}} (r_k \Delta k_r + t_k \Delta k_t) \qquad \Delta k_r = 2k, \quad \Delta k_t = k \tilde{k}$

- Assume Dark photon V with mass m_V in the plasma
- Operator $\kappa \phi^2 V_\mu V^\mu$ modifies the mass of $\Delta m_V \ll m_V, \kappa \ll 1$.
- $\mathcal{P} \sim \mathsf{Flux} \times \frac{1}{3} \sum_{\text{pol}} (r_k \Delta k_r + t_k \Delta k_t) \qquad \Delta k_r = 2k, \quad \Delta k_t = k \tilde{k}$
- $\epsilon_x = (0, 1, 0, 0), \quad \epsilon_y = (0, 0, 1, 0), \quad \epsilon_L = \frac{1}{m_V}(|\vec{k}|, 0, 0, E)$

- Assume Dark photon V with mass m_V in the plasma
- Operator $\kappa \phi^2 V_\mu V^\mu$ modifies the mass of $\Delta m_V \ll m_V, \kappa \ll 1$.

•
$$\mathcal{P} \sim \mathsf{Flux} \times \frac{1}{3} \sum_{\text{pol}} (r_k \Delta k_r + t_k \Delta k_t) \qquad \Delta k_r = 2k, \quad \Delta k_t = k - \tilde{k}$$

- $\epsilon_x = (0, 1, 0, 0), \quad \epsilon_y = (0, 0, 1, 0), \quad \epsilon_L = \frac{1}{m_V}(|\vec{k}|, 0, 0, E)$
- Solve assuming step wall:

 $\partial_z V^z = \text{continuous accross } z = 0$ $m^2(z)V^z = \text{continuous accross } z = 0$.

$$R_L = |r_l|^2 \approx \left(\frac{\Delta m_V^2}{2m_V^2}\right)^2 \frac{(\pi k_z L)^2}{\sinh^2(\pi k_z L)}$$

- Assume Dark photon V with mass m_V in the plasma
- Operator $\kappa \phi^2 V_\mu V^\mu$ modifies the mass of $\Delta m_V \ll m_V, \kappa \ll 1$.
- $\mathcal{P} \sim \mathsf{Flux} \times \frac{1}{3} \sum_{\text{pol}} (r_k \Delta k_r + t_k \Delta k_t) \qquad \Delta k_r = 2k, \quad \Delta k_t = k \tilde{k}$
- $\epsilon_x = (0, 1, 0, 0), \quad \epsilon_y = (0, 0, 1, 0), \quad \epsilon_L = \frac{1}{m_V}(|\vec{k}|, 0, 0, E)$
- Solve assuming step wall:

 $\partial_z V^z = {\rm continuous} \; {\rm accross} \; z = 0 \qquad m^2(z) V^z = {\rm continuous} \; {\rm accross} \; z = 0 \; .$

$$R_L = |r_l|^2 \approx \left(\frac{\Delta m_V^2}{2m_V^2}\right)^2 \frac{(\pi k_z L)^2}{\sinh^2(\pi k_z L)}$$

• $\mathcal{P} \sim n_V \gamma \left[\frac{1}{3}R_L(k_z + \tilde{k}_z) + (1 - R_L)(k_z - \tilde{k}_z)\right] \approx n_V \gamma \frac{2\gamma m_V R_L}{3}$

$$\mathcal{P} \sim n_V \gamma^2 \frac{2}{3} \left(\frac{\Delta m_V^2}{2m_V^2} \right)^2 \quad 1 \ll \gamma \ll (m_V L)^{-1} \sim v/m_V$$

Dynamic maximum pressure, Garcia, Koszegi and Petrossian arXiv:2212.10572

• LO pressure by particle getting a mass

$$\Delta \mathcal{P}_{1 \to 1} \to \sum_{i} \frac{\Delta m_i^2 T^2}{24}$$

• LO pressure by particle getting a mass

$$\Delta \mathcal{P}_{1 \to 1} \to \sum_{i} \frac{\Delta m_i^2 T^2}{24}$$

• contribution by hitting heavier physics

$$\Delta \mathcal{P}_{\text{mixing}} \approx \frac{Y^2 T^2 v^2}{48} \Theta(\gamma T - M^2 L_w)$$

• LO pressure by particle getting a mass

$$\Delta \mathcal{P}_{1 \to 1} \to \sum_{i} \frac{\Delta m_i^2 T^2}{24}$$

• contribution by hitting heavier physics

$$\Delta \mathcal{P}_{\text{mixing}} \approx \frac{Y^2 T^2 v^2}{48} \Theta(\gamma T - M^2 L_w)$$

• NLO pressure by gauge bosons emission

$$\Delta \mathcal{P}_{1 \to N} \sim 5 \sum_{i} g_i \frac{g^3 v}{16\pi^2} \gamma T^3 \log \frac{m_V}{gT}$$

• LO pressure by particle getting a mass

$$\Delta \mathcal{P}_{1 \to 1} \to \sum_{i} \frac{\Delta m_i^2 T^2}{24}$$

• contribution by hitting heavier physics

$$\Delta \mathcal{P}_{\text{mixing}} \approx \frac{Y^2 T^2 v^2}{48} \Theta(\gamma T - M^2 L_w)$$

• NLO pressure by gauge bosons emission

$$\Delta \mathcal{P}_{1 \to N} \sim 5 \sum_{i} g_i \frac{g^3 v}{16\pi^2} \gamma T^3 \log \frac{m_V}{gT}$$

$$\mathcal{P} \sim n_V \gamma^2 \frac{2}{3} \left(\frac{\Delta m^2}{2m^2}\right)^2 \quad 1 \ll \gamma \ll \frac{v}{m_V}$$

0

EWBG from ultra-relativistic walls

EWBG from ultra-relativistic walls

[arXiv:2106.14913] with Aleksandr Azatov and Wen Yin

Saving the soldier EWBG ?

Traditional EWBG

- Figure: Credit:T.Konstandin [1302.6713]
- if *slow wall*:

$$Y_B \sim Y_t imes \underbrace{\Gamma_{\mathrm{sph}}/T}_{10^{-6}} imes \underbrace{\Delta heta}_{ ext{CP: EDM constraints}}$$

Ruled out ? White, Postma, Vd Vis: 2206.01120

- Hidding CP violation
- Breaking B explicitly

Challenges of B-breaking EWPT Baryogenesis

- Colored particles $M\gtrsim$ TeV: $e^{-(10-20)}$.
- Strongly coupled
- Unsuppressed wash-out

EWPT Baryogenesis with relativistic walls

Ingredients:

• Breaks B by two units

• Works with relativistic bubble walls

Low energy baryogenesis with relativistic walls

$$\mathcal{L}_{SM} + \sum_{I=1,2} \underbrace{Y_I(\bar{B}_I H) P_L Q}_{\text{production}} + M_I \bar{B}_I B_I + \underbrace{y_I \eta \chi^c P_L B_I + \kappa \eta^c du}_{\text{decay dark sector}} + \underbrace{\frac{1}{2} m_\chi \bar{\chi}^c \chi}_{\text{B-violating}} + m_\eta^2 |\eta|^2.$$

• χ_i Massive Majorana, η diquark, B_I heavy vectorlike b-like quarks. $B(\eta) = 2/3, B(\chi) = 1.$

Low energy baryogenesis with relativistic walls

$$\mathcal{L}_{SM} + \sum_{I=1,2} \underbrace{Y_I(\bar{B}_I H) P_L Q}_{\text{production}} + M_I \bar{B}_I B_I + \underbrace{y_I \eta \chi^c P_L B_I + \kappa \eta^c du}_{\text{decay dark sector}} + \underbrace{\frac{1}{2} m_\chi \bar{\chi}^c \chi}_{\text{B-violating}} + m_\eta^2 |\eta|^2.$$

- χ_i Massive Majorana, η diquark, B_I heavy vectorlike b-like quarks. $B(\eta) = 2/3, B(\chi) = 1.$
- CP-violation

Low energy baryogenesis with relativistic walls

$$\mathcal{L}_{SM} + \sum_{I=1,2} \underbrace{Y_I(\bar{B}_I H) P_L Q}_{\text{production}} + M_I \bar{B}_I B_I + \underbrace{y_I \eta \chi^c P_L B_I + \kappa \eta^c du}_{\text{decay dark sector}} + \underbrace{\frac{1}{2} m_\chi \bar{\chi}^c \chi}_{\text{B-violating}} + m_\eta^2 |\eta|^2.$$

- χ_i Massive Majorana, η diquark, B_I heavy vectorlike b-like quarks. $B(\eta) = 2/3, B(\chi) = 1.$
- CP-violation

• Production: $\mathcal{P}(Q \to B_I) \neq \mathcal{P}(Q^c \to B_I^c)$

$$\Delta n_b = -\sum_{I} \Delta n_{B_I}$$

Low energy baryogenesis

$$\mathcal{L}_{SM} + \sum_{I=1,2} Y_I(\bar{B}_I H) P_L Q + M_I \bar{B}_I B_I + y_I \eta \chi^c P_L B_I + \kappa \eta^c du + \underbrace{\frac{1}{2} m_\chi \bar{\chi}^c \chi}_{\text{B-violating}} + m_\eta^2 |\eta|^2.$$

• Fast cascades; 4 channels wash-out : $B \rightarrow (ddud^cu^c)$, $B^c \rightarrow (d^cd^cu^cdu)$ mixing : $B \rightarrow (d^cd^cu^cd^cu^c)$, $B^c \rightarrow (ddudu)$

Low energy baryogenesis

$$\mathcal{L}_{SM} + \sum_{I=1,2} Y_I(\bar{B}_I H) P_L Q + M_I \bar{B}_I B_I + y_I \eta \chi^c P_L B_I + \kappa \eta^c du + \underbrace{\frac{1}{2} m_\chi \bar{\chi}^c \chi}_{\text{B-violating}} + m_\eta^2 |\eta|^2.$$

• Fast cascades; 4 channels
wash-out :
$$B \rightarrow (ddud^cu^c)$$
, $B^c \rightarrow (d^cd^cu^cdu)$
mixing : $B \rightarrow (d^cd^cu^cd^cu^c)$, $B^c \rightarrow (ddudu)$

•
$$\Delta n_B \equiv n_{SM-q} - n_{SM-\bar{q}} \approx \frac{|y_I|^2}{|y_I|^2 + |Y_I|^2} \times \frac{2|\kappa|^2}{2|\kappa|^2 + |\sum y_I \theta_I|^2}$$

Low energy baryogenesis

$$\mathcal{L}_{SM} + \sum_{I=1,2} Y_I(\bar{B}_I H) P_L Q + M_I \bar{B}_I B_I + y_I \eta \chi^c P_L B_I + \kappa \eta^c du + \underbrace{\frac{1}{2} m_\chi \bar{\chi}^c \chi}_{\text{B-violating}} + m_\eta^2 |\eta|^2.$$

• Fast cascades; 4 channels
wash-out :
$$B \rightarrow (ddud^cu^c)$$
, $B^c \rightarrow (d^cd^cu^cdu)$
mixing : $B \rightarrow (d^cd^cu^cd^cu^c)$, $B^c \rightarrow (ddudu)$

•
$$\Delta n_B \equiv n_{SM-q} - n_{SM-\bar{q}} \approx \left[3n_b^0 \sum_I \theta_I^2 \epsilon_I \times \frac{|y_I|^2}{|y_I|^2 + |Y_I|^2} \times \frac{2|\kappa|^2}{2|\kappa|^2 + |\sum y_I \theta_I|^2} \right]$$

• Experimental signatures: $N \leftrightarrow \overline{N}$, Flavor, collider push: $\boxed{m_{\chi} \sim m_{\eta} \sim M_B \gtrsim 2 \text{ TeV}}$ and d = b, u = t

How tuned is EWPT with relativistic walls ?

How tuned is EWPT with relativistic walls ?

[2207.02230]: Azatov, Barni, Chackraborty, MV, Yin

$pressure \ during \ EWPT$

Condition for relativistic wall $\left| \Delta V > 0.17 T_{\rm nuc}^2 v_{EW}^2 \right|$

NLO pressure from TB: [arXiv:2112.07686]: Gouttenoire, Jinno, Sala

$$\Delta \mathcal{P}_{\rm NLO}^{SM} \approx \underbrace{\left[\sum_{abc} \nu_a g_a \beta_c C_{abc}\right]}_{\approx 150} \frac{\kappa \zeta(3)}{\pi^3} \times \alpha M_Z(v_{EW}) \gamma_{wp} T_{\rm nuc}^3$$

$$\begin{array}{ll} \mbox{Terminal velocity:} & \gamma^{\rm terminal}_w \approx 50 \times \left(\frac{40 \ {\rm GeV}}{T_{\rm nuc}}\right)^3 \\ \mbox{Maximal mass:} & M^{MAX} \approx \sqrt{v_{EW}T_{\rm nuc}\gamma_w} \approx 700 \ {\rm GeV} \times \left(\frac{40 \ {\rm GeV}}{T_{\rm nuc}}\right)^3 \end{array}$$

• Only thing we need is long supercooling $T_{
m nuc} \ll v_{EW}$: $\Delta V \propto \gamma^0$, $\Delta \mathcal{P} \propto \gamma^{(0-1)}$

- Only thing we need is long supercooling $T_{
 m nuc} \ll v_{EW}$: $\Delta V \propto \gamma^0$, $\Delta \mathcal{P} \propto \gamma^{(0-1)}$
- Problem of EWPT for supercooling:

$$V_{\text{tree}} = -\frac{m_h^2}{2}h^2 + \frac{\lambda}{4}h^4, \qquad V_T(h) \propto \sum_i g_i^2 \frac{T^2 h^2}{24} - \frac{Th^3}{12\pi} \qquad \Rightarrow \boxed{T_{\min} \propto m_h} \quad \text{problem!}$$

- Only thing we need is long supercooling $T_{
 m nuc} \ll v_{EW}$: $\Delta V \propto \gamma^0$, $\Delta \mathcal{P} \propto \gamma^{(0-1)}$
- Problem of EWPT for supercooling:

$$V_{\text{tree}} = -\frac{m_h^2}{2}h^2 + \frac{\lambda}{4}h^4, \qquad V_T(h) \propto \sum_i g_i^2 \frac{T^2 h^2}{24} - \frac{Th^3}{12\pi} \qquad \Rightarrow \boxed{T_{\min} \propto m_h} \quad \text{problem!}$$

• With a singlet S with a Z_2 symmetry ?

$$V(h,S) = -\frac{m_h^2}{2}h^2 + \frac{\lambda}{4}h^4 - \frac{m_s^2}{4}S^2 + \frac{\lambda_s}{4}S^4 + \frac{\lambda_{hs}}{2}S^2h^2,$$

- Only thing we need is long supercooling $T_{
 m nuc} \ll v_{EW}$: $\Delta V \propto \gamma^0$, $\Delta \mathcal{P} \propto \gamma^{(0-1)}$
- Problem of EWPT for supercooling:

$$V_{\text{tree}} = -\frac{m_h^2}{2}h^2 + \frac{\lambda}{4}h^4, \qquad V_T(h) \propto \sum_i g_i^2 \frac{T^2 h^2}{24} - \frac{Th^3}{12\pi} \qquad \Rightarrow \boxed{T_{\min} \propto m_h} \quad \text{problem!}$$

• With a singlet S with a Z_2 symmetry ?

$$V(h,S) = -\frac{m_h^2}{2}h^2 + \frac{\lambda}{4}h^4 - \frac{m_s^2}{4}S^2 + \frac{\lambda_s}{4}S^4 + \frac{\lambda_{hs}}{2}S^2h^2,$$

• 1-step PT: Spectator scalar: Does not help much for supercooling

- Only thing we need is long supercooling $T_{
 m nuc} \ll v_{EW}$: $\Delta V \propto \gamma^0$, $\Delta \mathcal{P} \propto \gamma^{(0-1)}$
- Problem of EWPT for supercooling:

$$V_{\rm tree} = -\frac{m_h^2}{2}h^2 + \frac{\lambda}{4}h^4, \qquad V_T(h) \propto \sum_i g_i^2 \frac{T^2 h^2}{24} - \frac{Th^3}{12\pi} \qquad \Rightarrow \boxed{T_{\rm min} \propto m_h} \quad {\rm problem!}$$

• With a singlet S with a Z_2 symmetry ?

$$V(h,S) = -\frac{m_h^2}{2}h^2 + \frac{\lambda}{4}h^4 - \frac{m_s^2}{4}S^2 + \frac{\lambda_s}{4}S^4 + \frac{\lambda_{hs}}{2}S^2h^2,$$

- 1-step PT: Spectator scalar: Does not help much for supercooling
- 2-steps PT: $(0,0) \xrightarrow{SOPT} (0, v_s) \xrightarrow{FOPT} (v_{EW}, 0)$ In the second PT: $m_1^2 = \lambda hs^2$

$$m_{\text{eff}}^2(T) = -\frac{m_{\bar{h}}}{2} + \frac{\lambda_{hs}}{2}v_s^2 + C \times T^2 \to 0$$

Miguel Vanvlasselaer

[2207.02230]: Azatov, Barni, Chackraborty, MV, Yin

[2207.02230]: Azatov, Barni, Chackraborty, MV, Yin

I. SOPT: there is **never a barrier** separating the two minima

[2207.02230]: Azatov, Barni, Chackraborty, MV, Yin

I. SOPT: there is **never a barrier** separating the two minima

II. FOPT

I. SOPT: there is **never a barrier** separating the two minima

II. FOPT

 $\begin{array}{ll} III. & \mbox{Ultrarelativistic FOPT}\\ \gamma_w \gg 1 \mbox{ increasing } \lambda_{hs} \mbox{ at fixed } v_s.\\ [\rightarrow \mbox{ barrier even at } T=0 \mbox{ above the red dashed line]} \end{array}$

[2207.02230]: Azatov, Barni, Chackraborty, MV, Yin

I. SOPT: there is **never a barrier** separating the two minima

II. FOPT

 $\begin{array}{ll} III. & \mbox{Ultrarelativistic FOPT}\\ \gamma_w \gg 1 \mbox{ increasing } \lambda_{hs} \mbox{ at fixed } v_s.\\ [\rightarrow \mbox{ barrier even at } T=0 \mbox{ above the red dashed line]} \end{array}$

IV. No PT: the **system remains stuck** in the FV and never nucleates

[2207.02230]: Azatov, Barni, Chackraborty, MV, Yin

How much tuning do we need ?

$$T_{\rm nuc} \approx T_{\rm instability} \equiv \frac{\sqrt{-\frac{m_h^2}{2} + \frac{\lambda_{hs}}{2}v_s^2}}{C}$$

The tuning (*Giudice-Barbieri* definition):

$$\mathsf{tuning} \sim \frac{\partial \log \lambda_{hs}}{\partial \log T_{\mathrm{nuc}}/m_H} \propto \left(\frac{T_{\mathrm{nuc}}}{m_H}\right)^2$$

Relation between $T_{\rm nuc}$ and $M^{\rm MAX}$

$$\begin{split} M^{MAX} &\approx 700 \,\, \mathrm{GeV} \times \bigg(\frac{40 \,\, \mathrm{GeV}}{T_{\mathsf{nuc}}}\bigg) \bigg(\frac{\Delta V}{v_{EW}^4}\bigg)^{1/\delta} \\ &\Rightarrow \quad \mathsf{tuning} \approx \bigg(\frac{250 \,\, \mathrm{GeV}}{M_{\mathrm{heavy}}}\bigg)^2 \end{split}$$

A closer look at NLO pressure

A closer look at NLO pressure

[arXiv:2305.xxxx] with Aleksandr Azatov, Giulio Barni and Rudin Petrossian

The basis for the emission of GB: transverse modes

Equation of motion across the wall

$$\Box h = -V''(v)h$$
$$\Box \phi_2 = -2g\partial_\mu vA^\mu - \xi g^2 v^2 \phi_2 - V' \frac{\phi_2}{v}$$
$$\partial_\nu F^{\mu\nu} = \frac{1}{\xi} \partial^\mu (\partial_\nu A^\nu) + g^2 v^2 A^\mu - 2g\phi_2 \partial^\mu v$$

Impose unitary gauge $\xi \to \infty$

$$\Box h = -V''(h)h \qquad \qquad \partial_{\nu}F^{\mu\nu} = g^2 v^2 A^{\mu} \qquad \qquad \Rightarrow \partial_{\mu}\partial_{\nu}F^{\mu\nu} = \partial_{\mu}(v^2 A^{\mu}) = 0.$$

Vector field has three polarization degrees of freedom so that we can write down

$$A^{\mu} = \sum_{\lambda=1,2,3} \epsilon^{\mu}_{\lambda} a_{\lambda}(x). \qquad k_{\mu} = (k_0, k_{\perp}, 0, k_z)$$

 $\mathsf{T}: \epsilon_1 = (0, 0, 1, 0), \qquad \epsilon_2 = (k_\perp, k_0, 0, 0) / \sqrt{k_0^2 - k_\perp^2} \qquad \mathsf{L}: A_\mu^{(z-pol)} = \partial_n a + A_z, \quad n = 0, 1, 2$

The basis of solutions for the emission of GB: transverse modes

Step wall framework for transverse modes:

matching across the step wall: $a_T|_{<0} = a_T|_{>0}$ $\partial_z a_T|_{<0} = \partial_z a_T|_{>0}$

Going to pressure and exchange of momentum

Building the pressure

$$\langle \Delta p_R \rangle = \int dP_{\phi \to \phi A_R} \Delta p_R^z = \frac{1}{2p^z} \int \frac{d^3 k_R}{(2\pi)^3 2k^0} \int \frac{d^3 q}{(2\pi)^3 2q^0} |\mathcal{M}_R|^2 \ (2\pi)^3 \delta^{\{0,\perp\}}(p-q-k_R) \underbrace{\Delta p_R^z}_{<1/L_w}$$

$$\langle \Delta p_L \rangle = \int dP_{\phi \to \phi A_L} \underbrace{\Delta p_L^z}_{<1/L_w}$$

Pressure is (in the wall frame)

$$\mathcal{P} = \underbrace{\int \frac{d^3 p}{(2\pi)^3} f_{\phi}(p)}_{\gamma_w T^3} (\langle \Delta p_R \rangle + \langle \Delta p_L \rangle)$$

$$\begin{split} \Delta p_R^z &= |r_R|^2 (p-q+k) + (1-|r_R|^2) (p-q-\tilde{k}) \ , \\ \Delta p_L^z &= |r_L|^2 (p-q-\tilde{k}) + (1-|r_L|^2) (p-q+k) \ , \end{split}$$

Miguel Vanvlasselaer

Transverse emission of GB

•
$$\langle \Delta p_R^{q_z > 0} \rangle = \int dk_\perp^2 \int dx \frac{p_0}{(2p_z)(2q_z)(2k_z)} \cdot |\mathcal{M}_R^{q_z > 0}|^2 \cdot (p_z - q_z - \tilde{k}_z) \sim \frac{g^2 (\tilde{m}^2 - m^2)^2}{m^3}$$
 Dominant

This recovers the usual result from previous computations!!

Transverse emission of GB

•
$$\langle \Delta p_R^{q_z > 0} \rangle = \int dk_\perp^2 \int dx \frac{p_0}{(2p_z)(2q_z)(2k_z)} \cdot |\mathcal{M}_R^{q_z > 0}|^2 \cdot (p_z - q_z - \tilde{k}_z) \sim \frac{g^2 (\tilde{m}^2 - m^2)^2}{m^3}$$
 Dominant

•
$$\langle \Delta p_L^{q_z > 0} \rangle = \int dk_\perp^2 \int dx \frac{p_0}{(2p_z)(2q_z)(2k_z)} \cdot |\mathcal{M}_L^{q_z > 0}|^2 \cdot (p_z - q_z + k_z) \sim \frac{g^2 (\tilde{m}^2 - m^2)^2}{\tilde{m}^3}$$
 Strong

This recovers the usual result from previous computations!!

Transverse emission of GB

$$\begin{split} \bullet \ \langle \Delta p_R^{q_z > 0} \rangle &= \int dk_\perp^2 \int dx \frac{p_0}{(2p_z)(2q_z)(2k_z)} \cdot |\mathcal{M}_R^{q_z > 0}|^2 \cdot (p_z - q_z - \tilde{k}_z) \sim \frac{g^2 (\tilde{m}^2 - m^2)^2}{m^3} \\ \bullet \ \langle \Delta p_L^{q_z > 0} \rangle &= \int dk_\perp^2 \int dx \frac{p_0}{(2p_z)(2q_z)(2k_z)} \cdot |\mathcal{M}_L^{q_z > 0}|^2 \cdot (p_z - q_z + k_z) \sim \frac{g^2 (\tilde{m}^2 - m^2)^2}{\tilde{m}^3} \\ \bullet \ \langle \Delta p_R^{q_z < 0} \rangle &= \int dk_\perp^2 \int dx \frac{p_0}{(2p_z)(2q_z)(2k_z)} \cdot |\mathcal{M}_R^{q_z < 0}|^2 \cdot (p_z + q_z - \tilde{k}_z) \sim \frac{g^2 (\tilde{m}^2 - m^2)^2}{p_0^3} \\ \end{split}$$
 Relevant

This recovers the usual result from previous computations!!

10

 10^{-6}

10.1

0

20

40

— $\langle \Delta p_R^{q^z < 0} \rangle$

 $\langle \Delta p_L^{q^z < 0} \rangle$

Transverse emission of GB

$$\begin{array}{l} \bullet \ \left\langle \Delta p_{R}^{q_{z}>0} \right\rangle = \int dk_{\perp}^{2} \int dx \frac{p_{0}}{(2p_{z})(2q_{z})(2k_{z})} \cdot |\mathcal{M}_{R}^{q_{z}>0}|^{2} \cdot (p_{z} - q_{z} - \tilde{k}_{z}) \sim \frac{g^{2}(\tilde{m}^{2} - m^{2})^{2}}{m^{3}} & \text{Dominant} \\ \bullet \ \left\langle \Delta p_{L}^{q_{z}>0} \right\rangle = \int dk_{\perp}^{2} \int dx \frac{p_{0}}{(2p_{z})(2q_{z})(2k_{z})} \cdot |\mathcal{M}_{L}^{q_{z}>0}|^{2} \cdot (p_{z} - q_{z} + k_{z}) \sim \frac{g^{2}(\tilde{m}^{2} - m^{2})^{2}}{\tilde{m}^{3}} & \text{Strong} \\ \bullet \ \left\langle \Delta p_{R}^{q_{z}<0} \right\rangle = \int dk_{\perp}^{2} \int dx \frac{p_{0}}{(2p_{z})(2q_{z})(2k_{z})} \cdot |\mathcal{M}_{R}^{q_{z}<0}|^{2} \cdot (p_{z} + q_{z} - \tilde{k}_{z}) \sim \frac{g^{2}(\tilde{m}^{2} - m^{2})^{2}}{p_{0}^{3}} & \text{Relevant} \\ \bullet \ \left\langle \Delta p_{R}^{q_{z}<0} \right\rangle = \int dk_{\perp}^{2} \int dx \frac{p_{0}}{(2p_{z})(2q_{z})(2k_{z})} \cdot |\mathcal{M}_{L}^{q_{z}<0}|^{2} \cdot (p_{z} + q_{z} - \tilde{k}_{z}) \sim \frac{g^{2}(\tilde{m}^{2} - m^{2})^{2}}{p_{0}^{3}} & \text{Relevant} \\ \bullet \ \left\langle \Delta p_{L}^{q_{z}<0} \right\rangle = \int dk_{\perp}^{2} \int dx \frac{p_{0}}{(2p_{z})(2q_{z})(2k_{z})} \cdot |\mathcal{M}_{L}^{q_{z}<0}|^{2} \cdot (p_{z} + q_{z} + k_{z}) \sim \frac{g^{2}(\tilde{m}^{2} - m^{2})^{2}}{p_{0}^{3}} & \text{Negligible} \\ \\ \frac{10^{2}}{\frac{10^{2}}} \int \frac{10^{4}}{(2p_{z})(2q_{z})(2q_{z})(2k_{z})} \cdot |\mathcal{M}_{L}^{q_{z}<0}|^{2} \cdot (p_{z} + q_{z} + k_{z}) \sim \frac{g^{2}(\tilde{m}^{2} - m^{2})^{2}}{p_{0}^{3}} & \text{Negligible} \\ \frac{10^{2}}{\frac{10^{4}}} \int \frac{10^{4}}{(2p_{z})(2q_{z})(2q_{z})(2k_{z})} \cdot |\mathcal{M}_{L}^{q_{z}<0}|^{2} \cdot (p_{z} + q_{z} + k_{z}) \sim \frac{g^{2}(\tilde{m}^{2} - m^{2})^{2}}{p_{0}^{3}} & \text{Negligible} \\ \frac{10^{2}}{\frac{10^{4}}} \int \frac{10^{4}}{(2p_{z})(2p_{z})(2q_{z})(2k_{z})} \cdot \left\langle \frac{10^{4}}{p_{0}} \int \frac{10^{4}}{(2p_{z})(2q_{z})(2k_{z})} \cdot \left\langle \frac{10^{4}}{p_{0}} \int \frac{10^{4}}{(2p_{z})(2k_{z})} \cdot \left\langle \frac{10^{4}}{p_{0}} \int \frac{10^{4}}{(2p_{z})(2k_{z})} \cdot \left\langle \frac{10^{4}}{p_{0}} \int \frac{10^{4}}{(2p_{z})(2p_{z})(2k_{z})} \cdot \left\langle \frac{10^{4}}{p_{0}} \int \frac{10^{4}}{(2p$$

This recovers the usual result from previous computations!!

60 80 100

 p_0 [GeV]

40

60

 p_0 [GeV]

80 100

10

10

0 20

 p_0 [GeV]

 (Δp)

 10^{-10}

 10^{-13}

0

20 40 60 80 100

— $\langle \Delta p_R^{q^z < 0} \rangle$

 $\langle \Delta p_L^{q^z < 0} \rangle$

 $(\Delta n$

 $\langle \Delta p_T^q \rangle$

What piece interact with the current j_{μ} ??

Farrar-McIntosh [9412270]: $A_{\mu}^{(z-pol)} = \partial_n a + A_z$, n = 0, 1, 2 (1 \rightarrow 1 transitions) $-\partial_z^2 a + \partial_z A_z + g^2 v^2(z) a = 0$ $E^2 A_z - E^2 \partial_z a - g^2 v^2(z) A_z = 0$

Eliminate A_z

$$A_{z} = \frac{E^{2} \partial_{z} a}{E^{2} - m^{2}} \qquad A_{\mu}^{z - pol} = \left(\partial_{n} a, \frac{E^{2} \partial_{z} a}{E^{2} - m^{2}}\right) = \partial_{\mu} a + \underbrace{\frac{m^{2}}{E^{2}}(0, 0, 0, A_{z})}_{A_{\text{left}}^{\mu}}$$

Interacting piece

$$\Rightarrow \mathcal{M}_{\phi \to \phi A} \propto A_{\mu} j^{\mu} = \underbrace{j^{\mu} \partial_{\mu} a}_{\text{remove by hand}} + A^{\mu}_{\text{left}} j_{\mu} = \boxed{A^{\mu}_{\text{left}} j_{\mu}}$$

For v constant:

$$\epsilon_{\mu}^{z-pol} = \left(k_0, k_{\perp}, 0, \frac{E^2}{k_z}\right) \times \frac{k_z}{mE} = k_{\mu} \times \frac{k_z}{mE} + (0, 0, 0, \frac{m}{E})$$
$$\epsilon_{\lambda}^{\nu} = \partial^{\nu}a + \frac{m}{E}(0, 0, 0, 1)$$

The basis for the emission of GB: longitudinal modes

matching across the step wall: $\partial_z A^z = \text{continuous at } z = 0$ $m^2(z)A^z = \text{continuous at } z = 0$.

•
$$\langle \Delta p_R^{q_z > 0} \rangle = \int dk_\perp^2 \int dx \frac{p_0}{(2p_z)(2q_z)(2k_z)} \cdot |\mathcal{M}_R^{q_z > 0}|^2 \cdot (p_z - q_z + \tilde{k}_z) \sim \frac{g^2 p_0 m^2}{m_\psi^2} \left(\frac{\Delta m^2}{m^2 + \tilde{m}^2}\right)^2$$
 Dom

Miguel Vanvlasselaer

•
$$\langle \Delta p_R^{q_z > 0} \rangle = \int dk_\perp^2 \int dx \frac{p_0}{(2p_z)(2q_z)(2k_z)} \cdot |\mathcal{M}_R^{q_z > 0}|^2 \cdot (p_z - q_z + \tilde{k}_z) \sim \frac{g^2 p_0 m^2}{m_\psi^2} \left(\frac{\Delta m^2}{m^2 + \tilde{m}^2}\right)^2 \quad \text{Dom}$$

•
$$\langle \Delta p_L^{q_z > 0} \rangle = \int dk_\perp^2 \int dx \frac{p_0}{(2p_z)(2q_z)(2k_z)} \cdot |\mathcal{M}_L^{q_z > 0}|^2 \cdot (p_z - q_z + k_z) \cdot \frac{4m^2}{\tilde{m}^2} \sim \frac{g^2 p_0 m^4}{m_\psi^2 \tilde{m}^2} \left(\frac{\Delta m^2}{m^2 + \tilde{m}^2}\right)^-$$
 Dom

$$\begin{split} \bullet \ \langle \Delta p_R^{q_z > 0} \rangle &= \int dk_\perp^2 \int dx \frac{p_0}{(2p_z)(2q_z)(2k_z)} \cdot |\mathcal{M}_R^{q_z > 0}|^2 \cdot (p_z - q_z + \tilde{k}_z) \sim \frac{g^2 p_0 m^2}{m_\psi^2} \left(\frac{\Delta m^2}{m^2 + \tilde{m}^2}\right)^2 \quad \text{Dom} \\ \bullet \ \langle \Delta p_L^{q_z > 0} \rangle &= \int dk_\perp^2 \int dx \frac{p_0}{(2p_z)(2q_z)(2k_z)} \cdot |\mathcal{M}_L^{q_z > 0}|^2 \cdot (p_z - q_z + k_z) \cdot \frac{4m^2}{\tilde{m}^2} \sim \frac{g^2 p_0 m^4}{m_\psi^2 \tilde{m}^2} \left(\frac{\Delta m^2}{m^2 + \tilde{m}^2}\right)^2 \quad \text{Dom} \\ \bullet \ \langle \Delta p_R^{q_z < 0} \rangle &= \int dk_\perp^2 \int dx \frac{p_0}{(2p_z)(2q_z)(2k_z)} \cdot |\mathcal{M}_R^{q_z < 0}|^2 \cdot (p_z + q_z + k_z) \sim \frac{g^2 m^2}{p_0} \left(\frac{\Delta m^2}{m^2 + \tilde{m}^2}\right)^2 \quad \text{Neg} \end{split}$$

•
$$\langle \Delta p_R^{q_z > 0} \rangle = \int dk_\perp^2 \int dx \frac{p_0}{(2p_z)(2q_z)(2k_z)} \cdot |\mathcal{M}_R^{q_z > 0}|^2 \cdot (p_z - q_z + \tilde{k}_z) \sim \frac{g^2 p_0 m^2}{m_\psi^2} \left(\frac{\Delta m^2}{m^2 + \tilde{m}^2}\right)^2$$
 Dom
• $\langle \Delta p_L^{q_z > 0} \rangle = \int dk_\perp^2 \int dx \frac{p_0}{(2p_z)(2q_z)(2k_z)} \cdot |\mathcal{M}_L^{q_z > 0}|^2 \cdot (p_z - q_z + k_z) \cdot \frac{4m^2}{\tilde{m}^2} \sim \frac{g^2 p_0 m^4}{m_\psi^2 \tilde{m}^2} \left(\frac{\Delta m^2}{m^2 + \tilde{m}^2}\right)^2$ Dom

•
$$\langle \Delta p_R^{q_z < 0} \rangle = \int dk_\perp^2 \int dx \frac{p_0}{(2p_z)(2q_z)(2k_z)} \cdot |\mathcal{M}_R^{q_z < 0}|^2 \cdot (p_z + q_z + k_z) \sim \frac{g^2 m^2}{p_0} \left(\frac{\Delta m^2}{m^2 + \tilde{m}^2}\right)^2$$
 Neg

•
$$\langle \Delta p_L^{q_z < 0} \rangle = \int dk_\perp^2 \int dx \frac{p_0}{(2p_z)(2q_z)(2k_z)} \cdot |\mathcal{M}_L^{q_z < 0}|^2 \cdot (p_z + q_z - \tilde{k}_z) \sim \frac{g^2 m^2 m_\psi}{p_0^2} \left(\frac{\Delta m^2}{m^2 + \tilde{m}^2}\right)^2$$
 Neg

Longitudinal emission of GB: two limits

Take $m \rightarrow 0$, symmetry restored outside the bubble:

$$\begin{split} r_k &\to 1, \qquad t_k \to 0, \qquad \text{Right-movers disappear} \\ \Delta p_L^{q_z > 0} &\to (p_z - q_z - \tilde{k}_z) \sim \frac{k_\perp^2 + (1 - x)\tilde{m}^2 + x^2 m_\psi^2}{2x(1 - x)p_0} \\ \langle \Delta p_L^{q_z > 0} \rangle &\sim \int dk_\perp^2 \int dx \frac{p_0}{(2p_z)(2q_z)(2k_z)} \cdot |\mathcal{M}_L^{q_z > 0}|^2 \cdot (p_z - q_z - \tilde{k}_z) \sim g^2 \tilde{m} \end{split}$$

Right movers

Miguel Vanvlasselaer

Pressure on the bubble wall in the relativistic regime

Longitudinal emission of GB: two limits

$$\begin{split} \text{Take } \boxed{\tilde{m} \to m}, \text{ small mass difference:} \Rightarrow |r_R|^2 &= |r_L|^2 \sim \left|\frac{\tilde{m}^2 - m^2}{\tilde{m}^2 + m^2}\right|^2 \ll 1 \\ & \Delta p_R^z = |r_R|^2 (p - q + k) + (1 - |r_R|^2) (p - q - \tilde{k}) \approx (p - q - \tilde{k}) \\ & \Delta p_L^z = |r_L|^2 (p - q - \tilde{k}) + (1 - |r_L|^2) (p - q + k) \approx (p - q + k) \\ & \langle \Delta p_R^{q_z > 0} \rangle = \int dk_{\perp}^2 \int dx \frac{p_0}{(2p_z)(2q_z)(2k_z)} \cdot |\mathcal{M}_R^{q_z > 0}|^2 \cdot (p_z - q_z - \tilde{k}_z) \sim \frac{g^2 p_0 m^2}{m_\psi^2} \left(\frac{\Delta m^2}{m^2 + \tilde{m}^2}\right)^2 \\ & \langle \Delta p_L^{q_z > 0} \rangle = \int dk_{\perp}^2 \int dx \frac{p_0}{(2p_z)(2q_z)(2k_z)} \cdot |\mathcal{M}_L^{q_z > 0}|^2 \cdot (p_z - q_z + k_z) \sim \frac{4g^2 p_0 m^2}{m_\psi^2} \left(\frac{\Delta m^2}{m^2 + \tilde{m}^2}\right)^2 \end{split}$$
 Dominant

Miguel Vanvlasselaer

Comparison emission of GB: scaling

$$\mathcal{P}_L \approx \gamma_w^2 T^4 \frac{g^2 m^2}{m_\psi^2} \left(\frac{\Delta m^2}{m^2 + \tilde{m}^2}\right)^2$$

What happens ???

$$\begin{split} \langle \Delta p_R^{q_z > 0} \rangle &= \int dk_\perp^2 \int dx \frac{p_0}{(2p_z)(2q_z)(2k_z)} \cdot |\mathcal{M}_R^{q_z > 0}|^2 \cdot (p_z - q_z + \tilde{k}_z) \sim \frac{g^2 p_0 m^2}{m_\psi^2} \left(\frac{\Delta m^2}{m^2 + \tilde{m}^2}\right)^2 \\ M_R^\lambda \propto p_0 \Delta m^2 m \qquad (p_z - q_z + \tilde{k}_z) \propto x p_0 < 1/L_w \end{split}$$

May 2023

Take-home message

• Validity of step wall: $\Delta p_z \sim \gamma T < 1/L_w \sim m_H$

Take-home message

- Validity of step wall: $\Delta p_z \sim \gamma T < 1/L_w \sim m_H$
- Ordinary limit: transverse emission dominates Longitudinals with $m \rightarrow 0$:

Take-home message

- Validity of step wall: $\Delta p_z \sim \gamma T < 1/L_w \sim m_H$
- Ordinary limit: transverse emission dominates Longitudinals with $m \rightarrow 0$:

$$\mathcal{P} \sim \underbrace{\underbrace{(\underbrace{4}_{\mathsf{ref}} + \underbrace{1}_{\mathsf{trans}})\gamma_w T^3 g^3 \Delta m \log \Delta m / T_{\mathrm{nuc}}}_{\mathsf{ref}} + \underbrace{\underbrace{1}_{\mathsf{trans}}}_{\mathsf{ref}} \gamma_w T^3 g^3 \Delta m}_{\mathsf{Right-movers longitudinal GB}}$$

• Longitudinals when $m \neq 0$

$$\mathcal{P} \approx \gamma_w^2 T^4 \frac{g^2 m^2}{m_\psi^2} \left(\frac{\Delta m^2}{m^2 + \tilde{m}^2}\right)^2$$

until $\gamma \approx m_H/T$.
Take-home message

- Validity of step wall: $\Delta p_z \sim \gamma T < 1/L_w \sim m_H$
- Ordinary limit: transverse emission dominates Longitudinals with $m \rightarrow 0$:

$$\mathcal{P} \sim \underbrace{\underbrace{(\underbrace{4}_{\mathsf{ref}} + \underbrace{1}_{\mathsf{trans}})\gamma_w T^3 g^3 \Delta m \log \Delta m / T_{\mathrm{nuc}}}_{\mathsf{ref}} + \underbrace{\underbrace{1}_{\mathsf{trans}}}_{\mathsf{ref}} \gamma_w T^3 g^3 \Delta m}_{\mathsf{Right-movers longitudinal GB}}$$

• Longitudinals when $m \neq 0$

$$\mathcal{P} \approx \gamma_w^2 T^4 \frac{g^2 m^2}{m_\psi^2} \left(\frac{\Delta m^2}{m^2 + \tilde{m}^2}\right)^2$$

until $\gamma \approx m_H/T$.

• Questions: How to apply the same formalism to thick physical walls?

Back-up

Baryogenesis

- B-number violation; B-violating interactions, sphalerons
- CP-violation; physical phase into the yukawa matrix
- Out-of-equilibrium situation; expansion of the universe, first-order phase transition

Electroweak baryogenesis

Figure: Credit:T.Konstandin [1302.6713]

Scattering of quarks with CP-violating yukawas off the *slow* bubble wall. B-violation via *sphalerons*

Leptogenesis

Figure: Credit:T.Konstandin [1302.6713]

Out-of-equilibrium decay of heavy L-violating RH neutrinos. B-violation via sphalerons. CP violation via *loops*

VS

CP violation inside the bubble wall

Ingredients: Higgs field H, φ scalar, 2 heavy N_I , SM $SU(2)_L$ -fermions L_{α} , and χ_i light fermions

 $\mathcal{L} = i\bar{\chi}_i P_R \partial \!\!\!/ \chi_i + i\bar{N}_I \partial \!\!\!/ N_I - M_I \bar{N}_I N_I - Y_{iI} \varphi \bar{N}_I P_R \chi_i - y_{I\alpha} (H\bar{L}_\alpha) P_R N_I + h.c.$

Conservation of current and longitudinal modes

$$J^{\mu}\partial_{\mu}\theta \qquad J^{\mu} = g(\phi^{\dagger}\partial_{\mu}\phi - \phi\partial_{\mu}\phi^{\dagger}) \qquad \partial_{\mu}J^{\mu} = 0$$

• Transverse

$$\mathcal{M} = \frac{(p+q)_{\mu}k^{\mu}}{\Delta p_{inc}} + r_k \frac{(p+q)_{\mu}k_r^{\mu}}{\Delta p_r} - t_k \frac{(p+q)_{\mu}k_t^{\mu}}{\Delta p_t}$$

Conservation of current: $(m_{\psi} = \tilde{m}_{\psi}, m \neq \tilde{m}) \Rightarrow (p+q)_{\mu}k^{\mu} = (p+q)_z \Delta p_{inc}$

$$\mathcal{M} = (p+q)_z (1+r_k - t_k) = 0!$$

Conservation of current and longitudinal modes

$$J^{\mu}\partial_{\mu}\theta \qquad J^{\mu} = g(\phi^{\dagger}\partial_{\mu}\phi - \phi\partial_{\mu}\phi^{\dagger}) \qquad \partial_{\mu}J^{\mu} = 0$$

• Transverse

$$\mathcal{M} = \frac{(p+q)_{\mu}k^{\mu}}{\Delta p_{inc}} + r_k \frac{(p+q)_{\mu}k^{\mu}_r}{\Delta p_r} - t_k \frac{(p+q)_{\mu}k^{\mu}_t}{\Delta p_t}$$

Conservation of current: $(m_{\psi} = \tilde{m}_{\psi}, m \neq \tilde{m}) \Rightarrow (p+q)_{\mu}k^{\mu} = (p+q)_z \Delta p_{inc}$

$$\mathcal{M} = (p+q)_z (1+r_k - t_k) = 0!$$

• Longitudinals

$$a|_{z<0} = \frac{k_z}{mE} (e^{ikz} - r_k e^{ik_r z}) \qquad a|_{z>0} = t_k \times \frac{k_z}{E\tilde{m}} e^{ik_t z}$$
$$\mathcal{M} = \frac{k_z}{Em} \frac{(p+q)_\mu k^\mu}{\Delta p_{inc}} - \frac{k_z}{Em} r_k \frac{(p+q)_\mu k^\mu_r}{\Delta p_r} - \frac{\tilde{k}_z}{E\tilde{m}} t_k \frac{(p+q)_\mu k^\mu_t}{\Delta p_t} = \frac{(p+q)_z}{E} \underbrace{\left(\frac{k_z}{m} - \frac{k_z}{m} r_k - \frac{\tilde{k}_z}{\tilde{m}} t_k\right)}_{=0}$$

~

Can γ_{wp} be large enough to produce ϕ of M_{ϕ} ?

Transition strong enough : $\Delta V > \Delta \mathcal{P}_{LO}$

Transition sector without Gauge Bosons

Ĺ

$$\Delta \mathcal{P} = \Delta \mathcal{P}_{LO}$$

$$\downarrow$$

$$\Delta \mathcal{P} = \Delta \mathcal{P}_{LO} + \Delta \mathcal{P}_{NLO}$$

Runaway regime: acceleration until collision

$$\begin{split} & \downarrow \\ \gamma_{w,\text{MAX}} \approx \text{Min}\bigg[\frac{M_{\text{pl}}T_{\text{nuc}}}{v^2}, \frac{16\pi^2}{g_i g_{\text{gauge}}^3} \bigg(\frac{v}{T_{\text{nuc}}}\bigg)^3\bigg] \\ \Rightarrow \overline{M_{\phi}^{\text{MAX}}} \sim \text{Min}\bigg[T_{\text{nuc}}\bigg(\frac{M_{\text{pl}}}{v}\bigg)^{1/2}, 4\pi v\bigg(\frac{v}{T_{\text{nuc}}}\bigg)\bigg] \end{split}$$

Falkowski and No bubble wall production

Production of heavy states during the collision of bubbles. arXiv:1211.5615

- Can be non thermal DM: arXiv:1211.5615
- Or make a barygenesis mechanism: arXiv 1608.00583

Necessary ingredients

- Portal coupling similar to ours.
- Runaway bubble (otherwise, energy dissipated in the plasma): not operative in EWPT.
- Elastic collision (restoration of the false vacuum in between the bubble)

Constraints and experimental signatures on the EWBG proposed

O Neutron-anti-neutron oscillations: baryon number violation by 2 units

$$\frac{1}{\Lambda_{n\bar{n}}^5}\overline{u^c d^c d^c}udd \equiv \frac{(\sum \kappa \theta_I y_I)^2}{M_\eta^4 m_\chi}\overline{u^c d^c d^c}udd \qquad \Rightarrow \qquad \delta m_{\bar{n}-n} \sim \frac{\Lambda_{QCD}^6}{M_\eta^4 m_\chi} (\sum \kappa \theta_I y_I)^2$$

Current bounds on this mixing mass are of order $\delta m_{\bar{n}-n} \lesssim 10^{-33}$

$$\Lambda_{n\bar{n}} \gtrsim 10^6 \text{GeV} \quad (M_\eta, m_\chi) \gtrsim 10^5 \text{GeV}$$

- **②** Flavor violation: Need to couple strongly only to t_R, b_R
- Ontribution to electron EDM:

$$\frac{d_e}{e} \sim \frac{m_e (yYe)^2}{(4\pi)^6} \left(\frac{1}{\Lambda_{EDM}^2}\right) \sim 3 \times 10^{-33} \times \left(\frac{10\text{TeV}}{\Lambda_{EDM}}\right)^2 \text{cm}$$

while experimental bound is $|d_e| < 1.1 \times 10^{-29} {\rm cm} \cdot e$

Comparison with proposal in arXiv:2106.15602

Baryogenesis with relativistic walls by Baldes et al. arXiv:2106.15602

- Relativistic walls $\gamma_{wp} \gg 1$
- scalar model $\Delta \mathcal{L} = -rac{\lambda}{2}\phi^2 h^2 + rac{M_\phi^2}{2}\phi^2$ with production of heavy scalar ϕ
- ϕ in (3, 1, 2/3) of the SM and $\Delta \mathcal{L} = y_{di}\phi_i \bar{d}_R d'_R + y_{ui}\phi_i \bar{N}_R u^c_R$ with physics phase in y'
- $\bullet~{\rm CP}$ and B violation in decay $\phi \to bb$

Full expression

PT leptogenesis: CP violation in production+decay

$$\begin{split} \frac{n_B - n_{\bar{B}}}{s} \simeq -\frac{28}{79} \times \frac{135\zeta(3)g_{\chi}}{8\pi^4 g_*} \times \sum_I \theta_I^2 \sum_{\alpha,J} \mathrm{Im}(Y_I Y_J^* y_{\alpha J} y_{\alpha I}^*) \mathrm{Im} f_{IJ}^{(hl)} \\ \times \left(\frac{2}{|Y_I|^2} - \frac{1}{\sum_{\alpha} |y_{\alpha I}|^2}\right) \left(\frac{T_{nuc}}{T_{reh}}\right)^3 \frac{\sum_{\alpha} |y_{\alpha I}|^2}{\sum_{\alpha} |y_{\alpha I}|^2 + |Y_I|^2} \end{split}$$

EWPT baryogenesis: CP violation in production+decay

$$\begin{aligned} \frac{\Delta n_{Baryon}}{s} &\approx \frac{135\zeta(3)}{8\pi^4} \sum_{I,J} \theta_I^2 \frac{|y_I|^2}{|y_I|^2 + |Y_I|^2} \times \frac{g_b}{g_\star} \left(\frac{T_{\text{nuc}}}{T_{reh}}\right)^3 \\ \times \text{Im}(Y_I Y_J^* y_I^* y_J) \left(-\frac{2\text{Im}[f_B^{IJ}]}{|Y_I|^2} + \frac{4\text{Im}[f_B^{IJ}]|_{m_{\chi,\eta} \to 0}}{|y_I|^2} \right). \end{aligned}$$

Why do we even bother ?? Observation prospects of GW

Velocity

Final velocity
$$\gamma^{MAX} = \frac{1}{\sqrt{1 - v_{MAX}^2}}$$
 of the wall set by
 $\Delta V = \Delta \mathcal{P}(\gamma^{MAX}) \Rightarrow \qquad \text{determination } \gamma^{MAX}$

• ΔV independent of the velocity of the wall

Velocity

Final velocity
$$\gamma^{MAX} = \frac{1}{\sqrt{1-v_{MAX}^2}}$$
 of the wall set by

$$\Delta V = \Delta \mathcal{P}(\gamma^{MAX}) \qquad \Rightarrow \qquad \text{determination } \gamma^{MAX}$$

- ΔV independent of the velocity of the wall
- $\Delta \mathcal{P}(\gamma^{MAX})$ very difficult to compute in general and depends on the velocity

Velocity

Final velocity
$$\gamma^{MAX} = \frac{1}{\sqrt{1-v_{MAX}^2}}$$
 of the wall set by

$$\Delta V = \Delta \mathcal{P}(\gamma^{MAX}) \qquad \Rightarrow \qquad \text{determination } \gamma^{MAX}$$

- ΔV independent of the velocity of the wall
- $\Delta \mathcal{P}(\gamma^{MAX})$ very difficult to compute in general and depends on the velocity
- Generic method: solve the full coupled system of Boltzmann equations

$$p^{\mu}\partial_{\mu}f_i + rac{1}{2}\partial_z m_i[\phi]\partial_{p_z}f_i = \mathcal{C}[f_i,\phi]$$
 $\phi + rac{dV}{d\phi} + \sum_i rac{dm_i^2[\phi]}{d\phi} \int rac{d^3p}{(2\pi)^3} rac{1}{2E_i}f_i = 0$

Toy model with active mixing pressure

Toy model with two scalars ϕ (PT field), η (spectator catalizes), heavy N and light χ fermions

(ϕ,η,χ,N)

$$\mathcal{L}_{UV} = \frac{1}{2} (\partial_{\mu} \phi)^2 + \frac{1}{2} (\partial_{\mu} \eta)^2 - \frac{\tilde{m}_{\eta}^2 \eta^2}{2} - \frac{\tilde{\lambda}_{\phi}}{4} \phi^4 - \frac{\tilde{\lambda}_{\eta}}{4} \eta^4 - \frac{\tilde{\lambda}_{\phi\eta}}{2} \phi^2 \eta^2 + i \bar{\chi} \partial \!\!\!/ \chi + i \bar{N} \partial \!\!\!/ N - M \bar{N} N - Y_{\text{mixing}} \bar{\chi} \phi N + h.c.$$

54 / 55

May 2023

Summary on the velocity in the relativistic regime

• LO pressure by particle getting a mass

$$\Delta \mathcal{P}_{1 \to 1} \to \sum_{i} \frac{\Delta m_i^2 T^2}{24}$$

Summary on the velocity in the relativistic regime

• LO pressure by particle getting a mass

$$\Delta \mathcal{P}_{1 \to 1} \to \sum_{i} \frac{\Delta m_i^2 T^2}{24}$$

• NLO pressure by gauge bosons emission

$$\Delta \mathcal{P}_{1\to 2} \sim \sum_{i} g_i \frac{g^3 v}{16\pi^2} \gamma T^3$$

Summary on the velocity in the relativistic regime

• LO pressure by particle getting a mass

$$\Delta \mathcal{P}_{1 \to 1} \to \sum_{i} \frac{\Delta m_i^2 T^2}{24}$$

• NLO pressure by gauge bosons emission

$$\Delta \mathcal{P}_{1\to 2} \sim \sum_{i} g_i \frac{g^3 v}{16\pi^2} \gamma T^3$$

• contribution by hitting heavier physics

$$\Delta \mathcal{P}_{mixing} \approx \frac{Y^2 T^2 v^2}{48} \Theta(\gamma T - M^2 L_w)$$

Summary on the velocity in the relativistic regime

• LO pressure by particle getting a mass

$$\Delta \mathcal{P}_{1 \to 1} \to \sum_{i} \frac{\Delta m_i^2 T^2}{24}$$

• NLO pressure by gauge bosons emission

$$\Delta \mathcal{P}_{1 \to 2} \sim \sum_{i} g_i \frac{g^3 v}{16\pi^2} \gamma T^3$$

• contribution by hitting heavier physics

$$\Delta \mathcal{P}_{mixing} \approx \frac{Y^2 T^2 v^2}{48} \Theta(\gamma T - M^2 L_w)$$

$$\Delta \mathcal{P}_{tot}(\gamma^{\mathrm{MAX}}) = \Delta V \qquad \mathsf{VS} \qquad \Delta \mathcal{P}_{tot}(\gamma \to \infty) < \Delta V \quad \text{Runaway}$$

•

55 / 55