Bubbles from Dark confinement with Holography

Nicklas Ramberg nramberg@uni-mainz.de

Collaborators Enrico Morgante & Pedro Schwaller 2210,11821 2303,27???

How Fast Does The Bubble Grow

May 15 2023

< □)

SU(N) Yang-Mills

GWs from FOPTs

► LISA PT working group 2019

5D ED gravity in AdS \rightarrow 4D Large N_c Yang-Mills Kiritsis, Nitti, Gursoy 2007

$$\mathcal{S}_5 = -M_\rho^3 N_c^2 \int d^5 x \sqrt{g} \left(R - rac{4}{3} (\partial \Phi)^2 + V(\Phi)
ight) + 2M_
ho^3 \int_{\partial \mathcal{M}} d^4 x \sqrt{h} \mathcal{K},$$

- $V(\Phi)$ dilaton potential
- ▶ 5-D coordinate $r \iff RG$ scale
- Dilaton $\lambda = e^{\Phi} \iff$ t'Hooft coupling $\lambda_t = N_c g_{YM}^2$
- AdS-BH/Thermal AdS \iff Phases of SU(N_c)

イロト イボト イヨト イヨト

The potential $V(\lambda)$ and It's Parameters

UV Asymptotics

l

$$V(\lambda)=rac{12}{\ell^2}(1+v_0\lambda+v_1\lambda^2+...)$$

IR Asymptotics

$$V(\lambda) \sim \lambda^{rac{4}{3}} \left(\log(\lambda)
ight)^{rac{1}{2}}$$

 V_0 V_2 YM beta function 2-loops V_1 , V_3 Phenomenological parameters

 V_1 Free gas asymptotics, V_3 Latent heat

$$V_{1} = 170, \qquad V_{3} = 14. \qquad \frac{T}{T_{c}}$$

$$V(\lambda) = \frac{12}{\ell^{2}} \left(1 + V_{0}\lambda + V_{1}\lambda^{\frac{4}{3}} (\log[1 + V_{2}\lambda^{\frac{4}{3}} + V_{3}\lambda^{2}]^{\frac{1}{2}}) \right) \qquad JG |U|$$

Finite T Solutions

Confinement (HP) Phase Transition & Effective Action I

$$V_{\text{eff}}(\lambda_h, T) = \mathcal{F}(\lambda_h) - 4\pi M_p^3 N_c^2 b(\lambda_h)^3 \left(1 - \frac{T_h}{T}\right) . \qquad \text{JG} \left| \mathbf{U} \right|^2$$

7/12

Confinement (HP) Phase Transition & Effective Action II

Kinetic Term Normalization

We vary $c \rightarrow \frac{1}{3} - 3$, Moderate dependence on GW spectrum Thermal Tunneling effective action O(3) symmetric bounce

$$S_{eff} = \frac{4\pi}{T} \int d\rho \, \rho^2 \left[c \frac{N_c^2}{16\pi^2} (\partial_\rho \lambda_h(\rho))^2 + V_{\text{eff}}(\lambda_h(\rho), T) \right]$$

 $c \frac{N_c^2}{16\pi^2}$

Nucleation Rate for Thermal Tunneling

$$\Gamma = T^4 \left(\frac{\mathcal{S}_B}{2\pi}\right)^{3/2} e^{-\mathcal{S}_B}$$

Percolation: $\mathcal{P}(true) \simeq \mathcal{P}(false)$ (End of PT! GW Emission)

	α	$\beta/H(v_w=1)$	$\beta/H(0.1)$	β/H (0.01)	IC	h
$T_c = 50 \mathrm{MeV}$	0.343	9.0×10^4	$8.6 imes 10^4$	$8.2 imes 10^4$	JO	
$100{ m GeV}$	0.343	$6.8 imes10^4$	$6.4 imes10^4$	6.1×10^4	3	9 Q Q

8/12

Gravitational Wave Spectra SU(3) "The Money Plot"

GW spectra for SU(3) at different critical temperatures

JGU

ъ

Reference	2103.09827	2202.10503, 2205.06274	2104.12817
Theory	SU(N) YM	Strong Gauge theory	SUSY SU(N) YM
Approach	Pheno	Bottom-up	Top-Down
Supercooling	minimal	minor/moderate	moderate/large
V _W	$v_w \sim 10^{-4}$	$v_w \sim \mathcal{O}(0.01-0.3)$	$v_w \sim \mathcal{O}(0.01-1)$

Employ steady state approach like Bigazzi 2104.12817

$$\Delta P_{fric}^{tot} = 0 = \frac{F_{fric}}{A} + \Delta P_{bubble}$$

Consider the drag force on an external quark stationary moving in the plasma as the plasma friction $F_{fric} \sim F_{drag}$.

Momentum flow along string \iff Drag force on quark moving in plasma.

From Dewolfe 2013

< D > < P > < E >

$$F_{drag} = \frac{dp_1}{dt} = \pi_{\xi} = -\frac{ve^{2A(\lambda_s)}\lambda_s^{\frac{4}{3}}}{2\pi\ell_s^2}$$
$$\Delta P_{fric}^{tot} = 0 = \frac{F_{drag}}{A} + P_f(T_{boost}) - P_f(T_{perc})$$

 T_{boost} is the 2-D worldsheet BH temperature generated by the induced metric.

11/12

Э

- 10 Ib

Preliminary Results!

Access to the pressures in deconfined phase from the lattice fit. Finally for the wall velocity we obtain so far

$v_w = 0.07 \pm 0.03$

Further insights based on phenomenological arguments regarding this velocity computation are under consideration, $F_{fric} \sim N_c^2 F_{drag}$, reflected gluons of bubble wall ...

Take Home message: Quantitative predictions of GWs at strong coupling are at our grasp thanks to clever use of tools, even for not perfect CFTs!

12/12

< D > < P > < E >