

Baryogenesis via relativistic bubble expansion

Simone Blasi **Vrije Universiteit Brussel (VUB)**

"How fast does the bubble grow?" 15-17 May 2023, DESY Hamburg

Based on: Baldes, **SB**, Mariotti, Sevrin, Turbang [2106.15602] PRD

Baryon asymmetry of the Universe: $Y_B = \frac{n_b - n_{\bar{b}}}{s} \sim 10^{-10}$

Solution: some initial quark-anti quark asymmetry prevents strong annihilation, and explains absence of antimatter in our Universe.

Dynamical generation of the asymmetry: **baryogenesis**, a challenge for particle physics!

Sakharov conditions

- Baryon number violation
- C and CP violation
- Departure from thermal equilibrium

Simone Blasi - DESY - 15.05.2023

Electroweak baryogenesis

- SM sphalerons violate B+L
- Beyond the SM violation of CP
- First order electroweak phase transition

Fig. from Morrissey, Ramsey-Musolf [1206.2942]

Successful electroweak baryogenesis

• In tension with electric dipole moment measurement

See also: Postma, van de Vis, White [2206.01120] JHEP

2-loop Zee-Barr

$$|d_e| \sim 10^{-29} \ \theta_{CP} \left(\frac{2.5 \,\text{TeV}}{\Lambda}\right)^2 e \cdot cm$$

Glioti, Rattazzi, Vecchi [1811.11740] JHEP

A way out: CP only *temporarily* broken during the phase transition

Successful electroweak baryogenesis

• BAU suppressed for $v_w \rightarrow 0$ and $v_w \rightarrow 1$ (but possible for $v_w > c_s$)

Fig. from Cline, Kainulainen [2001.00568] PRD See also Dorsch, Huber, Konstandin [2106.06547]

Simone Blasi - DESY - 15.05.2023

nal waves?

Fig. from Laurent, Cline et al. [2102.12490] PRD

Can we have baryogenesis with (ultra) relativistic bubble walls?

Can this mechanism lead to a large GW signal?

Simone Blasi - DESY - 15.05.2023

Mass gain mechanism

• A particle Δ in thermal equilibrium gains a large mass M_{Λ} across the wall

$$\mathscr{L} \supset -\frac{\lambda}{2}\phi^2 |\Delta|^2$$

Simone Blasi - DESY - 15.05.2023

Baldes, **SB**, Mariotti, Sevrin, Turbang [2106.15602] PRD

 Δ particles crossing the ϕ wall and gaining a mass undergo asymmetric decays.

Mass gain mechanism

• A particle Δ in thermal equilibrium gains a large mass M_{Λ} across the wall

$$\mathscr{L} \supset -\frac{\lambda}{2}\phi^2 |\Delta|^2$$

Kinematics requires fast enough walls

$$\gamma_w > \frac{M_\Delta}{T_n}$$

Simone Blasi - DESY - 15.05.2023

Baldes, **SB**, Mariotti, Sevrin, Turbang [2106.15602] PRD

 Δ particles crossing the ϕ wall and gaining a mass undergo asymmetric decays.

Mass gain mechanism

• A particle Δ in thermal equilibrium gains a large mass M_{Λ} across the wall

$$\mathscr{L} \supset -\frac{\lambda}{2}\phi^2 |\Delta|^2$$

Kinematics requires fast enough walls

$$\gamma_w > \frac{M_\Delta}{T_n}$$

 Δ inside the bubble is out of equilibrium, and undergoes CP and B violating decays Simone Blasi - DESY - 15.05.2023

Baldes, **SB**, Mariotti, Sevrin, Turbang [2106.15602] PRD

 Δ particles crossing the ϕ wall and gaining a mass undergo asymmetric decays.

Mass gain mechanism

Mass gain mechanism

$Y_B \sim \left(\frac{100}{g_*}\right) \left(\frac{\epsilon_\Delta}{1/16}\right)$

Simone Blasi - DESY - 15.05.2023

$$\frac{\Delta}{6\pi} \left(\frac{T_n}{T_{RH}} \right)^3 10^5 Y_{B \ obs.}$$

Simone Blasi - DESY - 15.05.2023

Baldes, **SB**, Mariotti, Sevrin, Turbang

 Δ particles produced at the ϕ wall undergo asymmetric decays.

Simone Blasi - DESY - 15.05.2023

Baldes, **SB**, Mariotti, Sevrin, Turbang [2106.15602] PRD

 Δ particles produced at the ϕ wall undergo asymmetric decays.

• Δ decays as the "mass gain" mechanism

Simone Blasi - DESY - 15.05.2023

Baldes, **SB**, Mariotti, Sevrin, Turbang

 Δ particles produced at the ϕ wall undergo asymmetric decays.

Azatov-Vanvlasselaer mechanism

$$Y_B = \epsilon_\Delta \cdot \kappa_{Sph.} \cdot \mathscr{P}(\phi -$$

Azatov, Vanvlasselaer [2010.02590] JCAP

Azatov, Vanvlasselaer, Yin [2101.05721] JHEP

Prob. of 1 to 2 transition:

Azatov-Vanvlasselaer mechanism

Simone Blasi - DESY - 15.05.2023

 Azatov, Vanvlasselaer, Yin [2106.14913] JH violation at the wall Simone Blasi - DESY - 15.05.2023

• Azatov, Vanvlasselaer, Yin [2106.14913] JHEP (see also [2207.02230]): AV mechanism with CP

- violation at the wall
- Huang, Xie [2206.04691] JHEP; Dasgupta, Dev, Ghoshal, Mazumdar [2206.07032] PRD: high and low scale leptogenesis-style realization

Simone Blasi - DESY - 15.05.2023

• Azatov, Vanvlasselaer, Yin [2106.14913] JHEP (see also [2207.02230]): AV mechanism with CP

- violation at the wall
- Huang, Xie [2206.04691] JHEP; Dasgupta, Dev, Ghoshal, Mazumdar [2206.07032] PRD: high and low scale leptogenesis-style realization
- of ultra relativistic walls not considered

Simone Blasi - DESY - 15.05.2023

• Azatov, Vanvlasselaer, Yin [2106.14913] JHEP (see also [2207.02230]): AV mechanism with CP

• Shuve, Tamarit [1704.01979] JHEP: N_R gains a mass during the PT and decays, but option

- violation at the wall
- Huang, Xie [2206.04691] JHEP; Dasgupta, Dev, Ghoshal, Mazumdar [2206.07032] PRD: high and low scale leptogenesis-style realization
- of ultra relativistic walls not considered
- Falkowski, No [1211.5615] JHEP; Katz, Riotto [1608.00583] JCAP: production of heavy particles as a result of elastic wall collisions, leading to DM, BAU and GWs

Simone Blasi - DESY - 15.05.2023

Azatov, Vanvlasselaer, Yin [2106.14913] JHEP (see also [2207.02230]): AV mechanism with CP

• Shuve, Tamarit [1704.01979] JHEP: N_R gains a mass during the PT and decays, but option

Bubble wall dynamics

• Vacuum pressure:

$$\mathcal{P}_{dr} \sim \Delta V = c_{vac} \cdot v_{\phi}^4$$

- Runaway bubbles: $\Delta V > \mathcal{P}_{LO}, \ \mathcal{P}_{NLO} = 0$

$$\gamma_* \sim \frac{R_*}{R_c} \sim \frac{1}{\beta} \frac{T_n}{H_*} \gg 1$$

• Pressure from the plasma:

$$\mathcal{P}_{fr} = \mathcal{P}_{LO} + (\gamma) \mathcal{P}_{NLO}$$

 $1 \rightarrow 1$ transmission of particles changing mass across the wall

 $1 \rightarrow 2$ scatterings involving gauge bosons

$$\mathcal{P}_{LO} \sim g_a \frac{v_\phi^2 \ T^2}{24} + \mathcal{O}\left(\gamma^{-1}\right)$$

Bodeker, Moore Bodeker, Moore

[0903.4099] JCAP [1703.08215] JCAP

See also Hoche, Kozaczuk, Long, Turner, Wang [2007.10343] JCAP

Summary of kinematic conditions

Moderate supercooling

• Runaway bubbles:

• Efficient Δ crossing or production:

 $\frac{M_{\Delta}}{T_n} < \left(\frac{1}{\beta}\frac{T_n}{H_*}\right)$

Simone Blasi - DESY - 15.05.2023

$$\left(\frac{c_{vac}}{0.1} \cdot \frac{10}{g_a}\right)^{1/2}$$

$$a, \quad a = \begin{cases} 1 & MG \\ \frac{1}{2} & AV \\ & \checkmark \end{cases}$$

Anti-adiabatic condition (taking $v_{\phi} \sim T_n$)

A model for relativistic baryogenesis

- Two "flavors" $\Delta_{1,2}$ with QCD and hypercharge interactions
- B violation due to simultaneous diquark and leptoquark interactions

Simone Blasi - DESY - 15.05.2023

.05.2023

2

A model for relativistic baryogenesis

- Two "flavors" $\Delta_{1,2}$ with QCD and hypercharge interactions
- B violation due to simultaneous diquark and leptoquark interactions
- **B-L cons.** Δ decays: charge carried by N_R needs to be "hidden" until T_{EW}

(Explicit B-L interactions may be included as well)

Simone Blasi - DESY - 15.05.2023

.05.2023

2

Generating the asymmetry

Right after wall crossing:

• CP violating Δ decays generate a B-L asymmetry in the visible sector

Generating the asymmetry

Right after wall crossing:

- CP violating Δ decays generate a B-L asymmetry in the visible sector
- Δ should not annihilate before they \bullet undergo asymmetric decays: $\Gamma_{ann} < \Gamma_{\Lambda}$

• In their own gas frame, Δ particles are squeezed by a factor M_{Λ}/T_n

• The MG relative velocity is $v_{\Lambda} \sim T_n / M_{\Lambda} \ll 1$, Sommerfeld enhancement may be relevant

Preserving the asymmetry

Right after decay:

 Δ decay products should not erase the asymmetry on the way to kinetic equilibrium

 Δ decays with boost ~ M_{Λ}/T_n intact

- All the inverse decays are fast, but quarks thermalize faster
- + N_R needs to thermalize fast as well to not erase the asymmetry: additional interactions

Preserving the asymmetry

Right after decay:

 Δ decay products should not erase the asymmetry on the way to kinetic equilibrium

• Δ decays with boost ~ M_{Λ}/T_n intact

 $E_N = \frac{M_{\Delta}^2}{kT_n}$

U

 Δ decays at rest

 Γ_{Inv}

Daugther N from a boosted Δ scattering off a bath up quark.

- All the inverse decays are fast, but quarks thermalize faster
- + N_R needs to thermalize fast as well to not erase the asymmetry: additional interactions

Preserving the asymmetry

After equilibrium is reached at $T = T_{RH}$

- Interactions mediated by Δ can re-equilibrate the B-L charge between dark and visible sector

Effective vertex contributing to the washout from integrating out Δ at tree level.

Not shown: wash out from Boltzmannsuppressed inverse decay rates.

Gravitational waves

Runaway bubbles

- Latent heat goes into kinetic/gradient lacksquareenergy of expanding scalar field bubbles
- Peak amplitude: lacksquare

$$h^2 \Omega_{GW} \simeq 4 \cdot 10^{-7} \left(\frac{1}{\beta_H}\right)^2 \left(\frac{\alpha}{1+\alpha}\right)^2$$

Peak frequency: \bullet

$$f_{peak} \simeq 260 \ Hz \ \left(\frac{T_{RH}}{10^{10} \ GeV}\right)$$

Simulation of thick-walled bubble collisions with $\gamma = 4$. Fig. from Cutting, Escartin, Hindmarsh, Weir [2005.13537] PRD

Gravitational waves

Runaway bubbles

- Latent heat goes into kinetic/gradient • energy of expanding scalar field bubbles
- Peak amplitude:

$$h^2 \Omega_{GW} \simeq 4 \cdot 10^{-7} \left(\frac{1}{\beta_H}\right)^2 \left(\frac{\alpha}{1+\alpha}\right)^2$$

Peak frequency: \bullet

$$f_{peak} \simeq 260 \ Hz \ \left(\frac{T_{RH}}{10^{10} \ GeV}\right)$$

Summary of the results

Conclusion

- We have presented two mechanisms for baryogenesis with (ultra) relativistic bubble walls during FOPTs: mass gain (MG) and Azatov-Vanvlasselaer heavy particle production (AV)
- We have derived requirements on the phase transition properties, mass spectrum, and CP violation for reproducing the observed baryon asymmetry
- Some of the features/challenges of these mechanisms apply beyond our specific choice of the model
- Interesting interplay with gravitational wave production, even though our setups work best at high scales to avoid washout

Conclusion

- We have presented two mechanisms for baryogenesis with (ultra) relativistic bubble walls during FOPTs: mass gain (MG) and Azatov-Vanvlasselaer heavy particle production (AV)
- We have derived requirements on the phase transition properties, mass spectrum, and CP violation for reproducing the observed baryon asymmetry
- Some of the features/challenges of these mechanisms apply beyond our specific choice of the model
- Interesting interplay with gravitational wave production, even though our setups work best at high scales to avoid washout

Thank you!