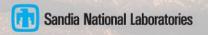
### **Activation of Erbium Films for Hydrogen Storage**

HAXPES 2011
September 14-16, 2011
Deutsches Elektronen-Synchrotron DESY
Hamburg, Germany

Michael T. Brumbach<sup>1</sup>, James A. Ohlhausen<sup>1</sup>, Kevin R. Zavadil<sup>1</sup>, Clark S. Snow<sup>1</sup>, Joseph C. Woicik<sup>2</sup>


<sup>1</sup>Sandia National Laboratories <sup>2</sup>National Institute of Standards & Technology, *Synchrotron Methods Group* 

#### Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.







# Hydrogen storage

>50 elements are known to form stable metal hydrides – transition metals and lanthanides Mg, Sc, Ti, Nb, Ta, etc.

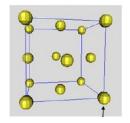
Pt and Pd – important for H<sub>2</sub> dissociation

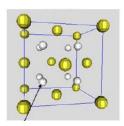
| hydrogen<br>1       |                                                |        |                      |                         |                   |                      |                   |                     |                      |                       |                     |                    |                   | helium<br>2          |                   |                    |                   |                   |
|---------------------|------------------------------------------------|--------|----------------------|-------------------------|-------------------|----------------------|-------------------|---------------------|----------------------|-----------------------|---------------------|--------------------|-------------------|----------------------|-------------------|--------------------|-------------------|-------------------|
| Н                   | Applicationsbatteries, heat pumps, fuel cells, |        |                      |                         |                   |                      |                   |                     |                      |                       |                     |                    |                   | He                   |                   |                    |                   |                   |
| 1.0079<br>lithium   |                                                |        |                      |                         |                   |                      |                   |                     |                      |                       |                     |                    |                   | 4.0026<br>neon       |                   |                    |                   |                   |
| 3                   | 4                                              | 4      |                      |                         |                   |                      |                   |                     |                      |                       |                     |                    | 5                 | 6                    | 7                 | 8                  | 9                 | 10                |
| Li                  | Be                                             |        |                      |                         |                   |                      |                   |                     |                      |                       |                     |                    | В                 | C                    | N                 | 0                  | F                 | Ne                |
| 6.941<br>sodium     | 0012                                           |        |                      |                         |                   |                      |                   |                     |                      |                       |                     |                    | 10.811            | 12.011<br>silicon    | 14.007            | 15.999             | 18.998            | 20.180            |
| 11                  | magnesium<br>12                                |        |                      |                         |                   |                      |                   |                     |                      |                       |                     |                    | aluminium<br>13   | 14                   | phosphorus<br>15  | sulfur<br>16       | chlorine<br>17    | argon<br>18       |
| Na                  | Mg                                             | )      | AI Si P S CI A       |                         |                   |                      |                   |                     |                      |                       |                     |                    |                   |                      |                   | Ar                 |                   |                   |
| 22.990<br>potassium | 24.305<br>calcium                              |        | scandium             | titanium                | vanadium          | chromium             | manganese         | iron                | cobalt               | nickel                | copper              | zinc               | 26.982<br>gallium | 28.086<br>germanium  | 30.974<br>arsenic | 32.065<br>selenium | 35.453<br>bromine | 39.948<br>krypton |
| 19                  | 20                                             |        | 21                   | 22                      | 23                | 24                   | 25                | 26                  | 27                   | 28                    | 29                  | 30                 | 31                | 32                   | 33                | 34                 | 35                | 36                |
| K                   | Ca                                             |        | Sc                   | Ti                      | V                 | Cr                   | Mn                | Fe                  | Co                   | Ni                    | Cu                  | Zn                 | Ga                | Ge                   | As                | Se                 | Br                | Kr                |
| 39.098<br>rubidium  | 40.078<br>strontium                            |        | 44,956<br>vttrium    | 47 gcz                  | niopini           | 51.996<br>molybdenum | 54.938            | 55,845<br>ruthenium | 58.933               | palladium             | 63,546<br>silver    | 65,39<br>cadmium   | 69.723            | 72.61                | 74.922            | 78.96              | 79.904<br>iodine  | 83.80             |
| 37                  | 38                                             |        | 39                   | 40                      | 41                | 42                   | technetium<br>43  | 44                  | rhodium<br>45        | 46                    | 47                  | 48                 | indium<br>49      | tin<br>50            | antimony<br>51    | tellurium<br>52    | 53                | xenon<br>54       |
| Rb                  | Sr                                             |        | Y                    | Zr                      | Nb                | Мо                   | Тс                | Ru                  | Rh                   | Pd                    | Ag                  | Cd                 | In                | Sn                   | Sb                | Te                 | Ï                 | Xe                |
| 85.468              | 87.62                                          |        | 88.906               | 91.224                  | 92 000            | 95.94                | [98]              | 101.07              | 102.91               | 106.42                | 107.87              | 112.41             | 114.82            | 118.71               | 121.76            | 127.60             | 126.90            | 131.29            |
| caesium<br>55       | barium<br><b>56</b>                            | 57-70  | lutetium<br>71       | bafnium<br>12           | cantalum<br>13    | tungsten<br>74       | rhenium<br>75     | osmium<br>76        | iridium<br>77        | platinum<br><b>78</b> | gold<br><b>79</b>   | mercury<br>80      | thallium<br>81    | lead<br>82           | bismuth<br>83     | polonium<br>84     | astatine<br>85    | radon<br>86       |
| Cs                  | Ba                                             | *      | Lu                   | Hf                      | Ta                | W                    | Re                | Os                  | lr                   | Pt                    | Au                  | Hg                 | TI                | Pb                   | Bi                | Po                 | At                | Rn                |
| 132.91<br>francium  | 137.33<br>radium                               |        | 174.97<br>lawrencium | 178.49<br>rutherfordium | 180.95<br>dubnium | 183.84<br>seaborgian | 186.21<br>bohrium | 190.23<br>hassium   | 192.22<br>meitnerium | 195.08                | 196.97<br>unununium | 200.59<br>ununbium | 204.38            | 207.2<br>ununguadium | 208.98            | [209]              | [210]             | [222]             |
| 87                  | 88                                             | 89-102 | 103                  | 104                     | 105               | 106                  | 107               | 108                 | 109                  | nunnilium<br>110      | 111                 | 112                |                   | 114                  |                   |                    |                   |                   |
| Fr                  | Ra                                             | * *    | Lr                   | Rf                      | Db                | Sg                   | Bh                | Hs                  | Mt                   | Uun                   | Uuu                 | Uub                |                   | Uuq                  |                   |                    |                   |                   |
| [223]               | [226]                                          |        | [262]                | [261]                   | [262]             | [266]                | [264]             | [269]               | [268]                | [271]                 | [272]               | [277]              |                   | [289]                |                   |                    |                   |                   |

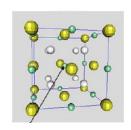
\*Lanthanide series

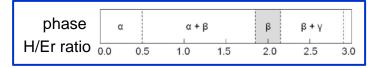
\* \* Actinide series

|   | lanthanum<br>57 | cerium<br>58 | praseodymium<br>59 | neodymium<br>60 | promethium<br>61 | samarium<br>62 | europium<br>63 | gadolinium<br><b>64</b> | terbium<br>65 | dysprosium<br>66 | holmium<br>67 | erbium<br>68 | thulium<br>69 | ytterbium<br>70 |
|---|-----------------|--------------|--------------------|-----------------|------------------|----------------|----------------|-------------------------|---------------|------------------|---------------|--------------|---------------|-----------------|
|   | La              | Ce           | Pr                 | Nd              | Pm               | Sm             | Eu             | Gd                      | Tb            | Dy               | Но            | Ĕr           | Tm            | Yb              |
| 1 | 138.91          | 140.12       | 140.91             | 144.24          | [145]            | 150.36         | 151.96         | 157.25                  | 158.93        | 162.50           | 164.93        | 167.26       | 168.93        | 173.04          |
| ſ | actinium        | thorium      | protactinium       | uranium         | neptunium        | plutonium      | americium      | curium                  | berkelium     | californium      | einsteinium   | fermium      | mendelevium   | nobelium        |
| ı | 89              | 90           | 91                 | 92              | 93               | 94             | 95             | 96                      | 97            | 98               | 99            | 100          | 101           | 102             |
|   | Ac              | Th           | Pa                 | U               | Np               | Pu             | Am             | Cm                      | Bk            | Cf               | Es            | Fm           | Md            | No              |
| Į | [227]           | 232.04       | 231.04             | 238.03          | [237]            | [244]          | [243]          | [247]                   | [247]         | [251]            | [252]         | [257]        | [258]         | [259]           |


### **Erbium**


### ~43<sup>rd</sup> most abundant element in earth's crust Melting point ~1530°C [Xe]6s<sup>2</sup>4f<sup>12</sup>


\*Lanthanide series


\* \* Actinide series

|   | lanthanum<br><b>57</b> | cerium<br>58 | praseodymium<br><b>59</b> | neodymium<br><b>60</b> | promethium<br>61 | samarium<br><b>62</b> | europium<br>63 | gadolinium<br><b>64</b> | terbium<br><b>65</b> | dysprosium<br>66 | holmium<br>67 | erbium<br>68 | thulium<br>69 | ytterbium<br><b>70</b> |
|---|------------------------|--------------|---------------------------|------------------------|------------------|-----------------------|----------------|-------------------------|----------------------|------------------|---------------|--------------|---------------|------------------------|
| į | La                     | Ce           | Pr                        | Nd                     | Pm               | Sm                    | Eu             | Gd                      | Tb                   | Dv               | Hd            | Ēr           | †m            | Yb                     |
|   | 138.91                 | 140.12       | 140.91                    | 144.24                 | [145]            | 150.36                | 151.96         | 157.25                  | 158.93               | 162.50           | 164.93        | 167.26       | 168.93        | 173.04                 |
|   | actinium               | thorium      | protactinium              | uranium                | neptunium        | plutonium             | americium      | curium                  | berkelium            | californium      | einsteinium   | fermium      | mendelevium   | nobelium               |
|   | 89                     | 90           | 91                        | 92                     | 93               | 94                    | 95             | 96                      | 97                   | 98               | 99            | 100          | 101           | 102                    |
|   | Ac                     | Th           | Pa                        | U                      | Np               | Pu                    | Am             | Cm                      | Bk                   | Cf               | Es            | Fm           | Md            | No                     |
|   | [227]                  | 232.04       | 231.04                    | 238.03                 | [237]            | [244]                 | [243]          | [247]                   | [247]                | [251]            | [252]         | [257]        | [258]         | [259]                  |





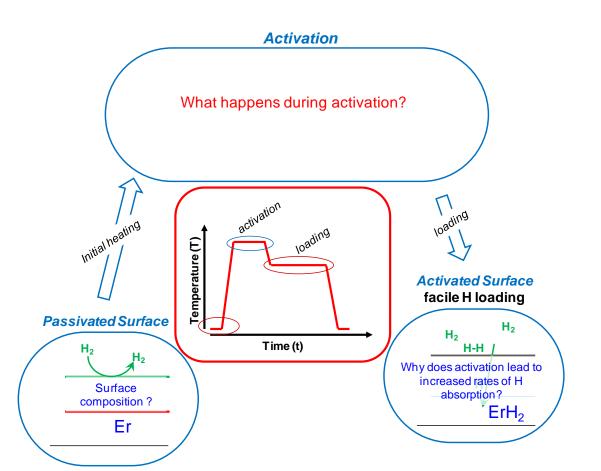


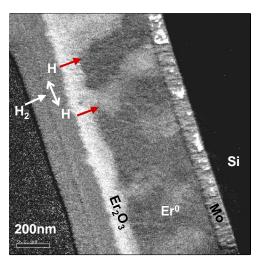


### Three known hydride phases

Alpha – solid solution

Beta – FCC – ErH<sub>2</sub>


Gamma – "unstable ErH<sub>3</sub>" (decomposes to ErH<sub>2</sub> without overpressure of H<sub>2</sub>)


# Commonly used as optical dopant in IR absorbing glasses



### **Activation?**

Hydriding of metals (erbium and others) requires a thermal activation step in order to load the metals with hydrogen in a manageable timeframe.





Parish, Snow, Brewer. *J. Mater. Res.* **24** (2009) 1868-79.

Tewell, King. *App. Surf. Sci.* **253** (2006) 2597-602.

### Characterization of the Activation Process

in situ

ex situ



**XPS Chemistry** 

Quantification

**Depth-profiling** 

Photoelectron Spectroscopy (XPS/UPS) Kratos Axis Ultra DLD



**VKE-XPS** Chemistry

Non destructive depth-profiling

Variable kinetic energy XPS at X24A **National Synchrotron Light Source at Brookhaven National Labs** 



**LEIS Sensitivity** 

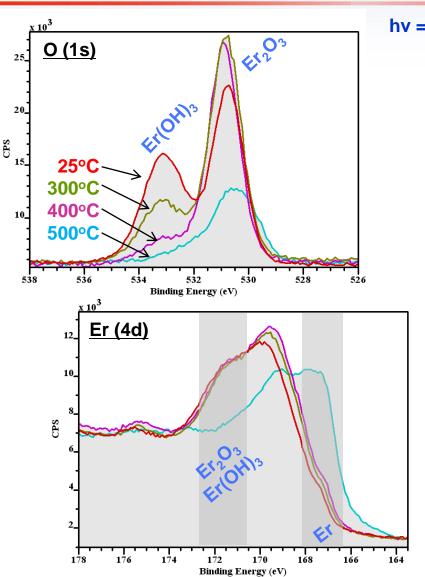
Quantification

**Depth-profiling** 

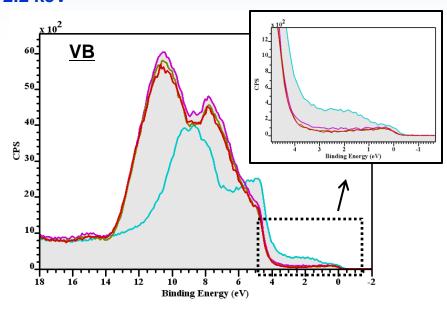
Low Energy Ion Scattering ION-TOF gtac<sup>100</sup>






**ToF-SIMS Sensitivity** (ppm-ppb)

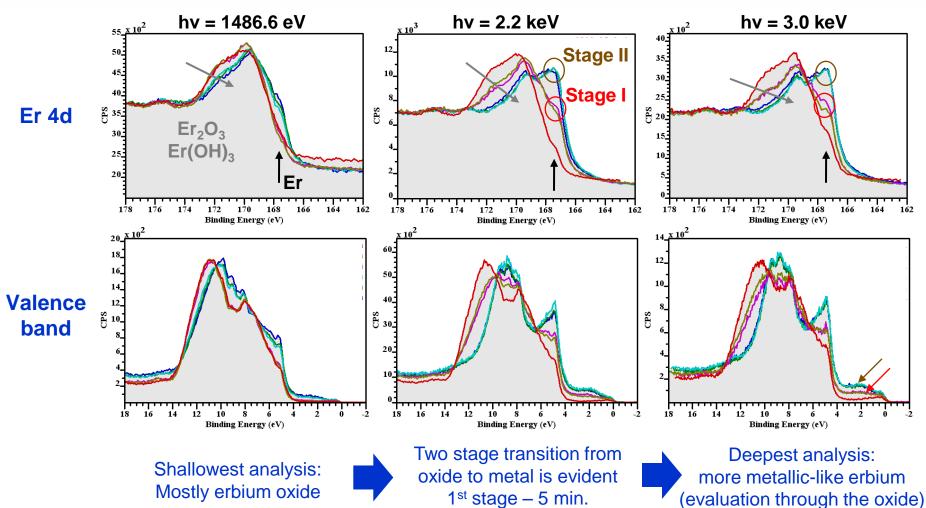
H can be observed


**Depth-profiling** 

**Time-of-Flight Secondary Ion Mass Spectrometry** (ToF-SIMS) Ion-TOF.SIMS 5

## Identifying the threshold temperature



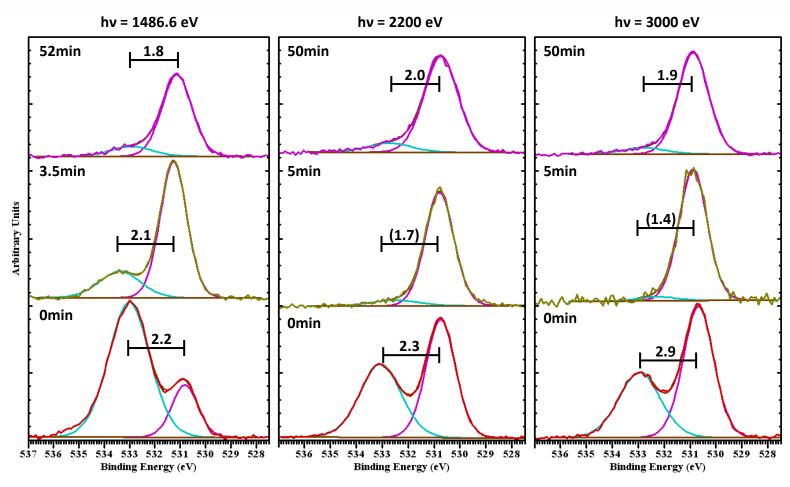

#### hv = 2.2 keV



- 1. Initial heating leads to decrease in hydroxide concentration
- 2. < 400°C slight changes in the Er (4d) lineshape and valence band spectra
- 3. > 400°C substantial decrease in the O (1s) intensity and the Er (4d) shifts
   photoemission in the band gap

### Time evolution at the threshold temperature

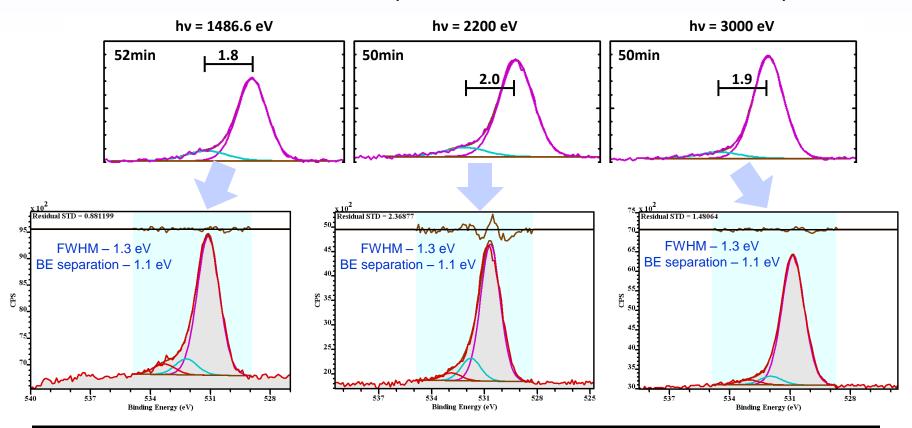
Two stages are evident. 400°C for 0, (5, 10), [20, 30, 50] minutes




2<sup>nd</sup> stage – 20 min.

### **Evolution of the oxide**

Stage I - Initial heating substantially decreases hydroxyl content.


Stage II - Additional heating leads to re-emergence of a high BE component.



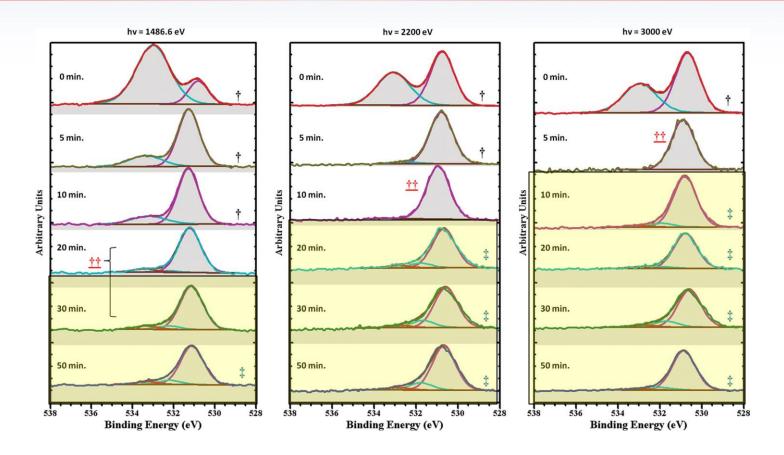
→ BE separations change. FWHM change. Simplest fitting strategy (2 peaks – oxide and hydroxide) – doesn't work.

# Peak shape change of the O 1s

Activated films show an O 1s lineshape that can be fit with three identical components.



PHYSICAL REVIEW B 73, 245312 (2006)


Surface states, surface potentials, and segregation at surfaces of tin-doped In<sub>2</sub>O<sub>3</sub>

Y. Gassenbauer, R. Schafranek, and A. Klein\*
Darmstadt University of Technology, Institute of Materials Science, Petersenstrasse 23, D-64287 Darmstadt, Germany



Used this peak fitting for O 1s and In 3d in Sn:In<sub>2</sub>O<sub>3</sub> – surface plasmon losses

## New lineshape emerges from subsurface boundary



Change in lineshape occurs earliest in deepest analysis (high BE shoulder shows greater intensity with continued annealing – oxygen defect at the oxide/metal interface)

Stage II - Subsurface boundary moves nearer to surface with continued annealing

## Low Energy Ion Scattering (LEIS)

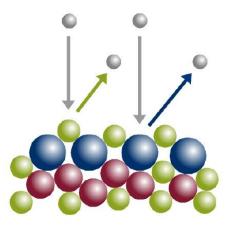
(matrix independent quantification of elemental surface coverage)

### **Principles**

Bombard surface with noble gas ions at low energy (few keV)

Ions are scattered by surface atoms according to conservation laws of energy and momentum

Measure energy of the scattered ions 


determine mass of surface atom

Intensity is proportional to surface coverage



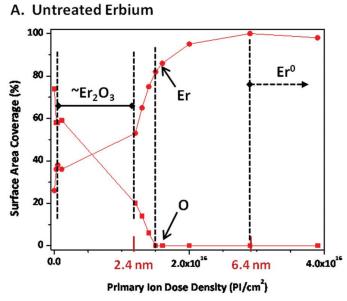
Low Energy Ion Scattering ION-TOF gtac<sup>100</sup>

<sup>3</sup>He<sup>+</sup>, <sup>4</sup>He<sup>+</sup>, Ne<sup>+</sup>, Ar<sup>+</sup>, ...



#### **LEIS Features**

- Reliable and straight-forward quantification
- Ultra-high surface sensitivity top atomic layer analysis
- Detection of all elements > He
- Non-destructive in-depth analysis
- Sensitive to isotopes
- Detection limits:

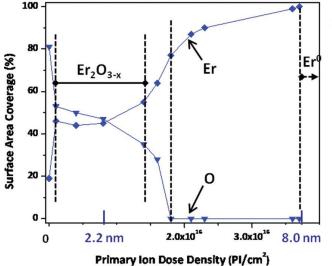

Li - O ≥ 1 %

F - Cl 1% - 0.05%

K - U 500 ppm - 10 ppm

# LEIS (ion scattering) depth profile

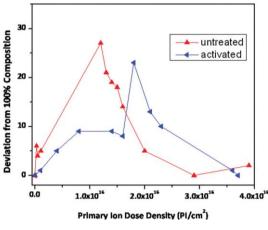
### Annealing/Activation leads to deeper penetration of Oxygen and a sub-stoichiometric surface oxide.




**As-Received** nearly stoichiometric Er<sub>2</sub>O<sub>3</sub> surface layer

• O content goes to 0%, but Er does not go to 100%

(other components not identified in XPS, TOF-SIMS)






**After Activation** sub-stoichiometric oxide surface layer

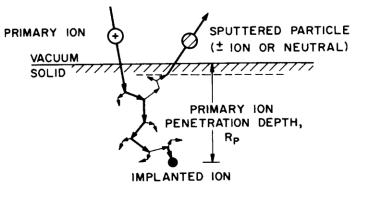
- Surface layer approx. twice as thick
- erbium content does not reach 100% until 1.6 nm deeper than in the asreceived film

C. Quantitative Deviation



 deviation from 100% quantification shifts further from the surface after annealing




## Sensitivity and Hydrogen: ToF-SIMS depth profile

### **Principles**

Bombard surface primary ion beam
Secondary ions are extracted and injected into time-of-flight analyzer
ToF analyzer separates ions over time according to mass to charge ratio

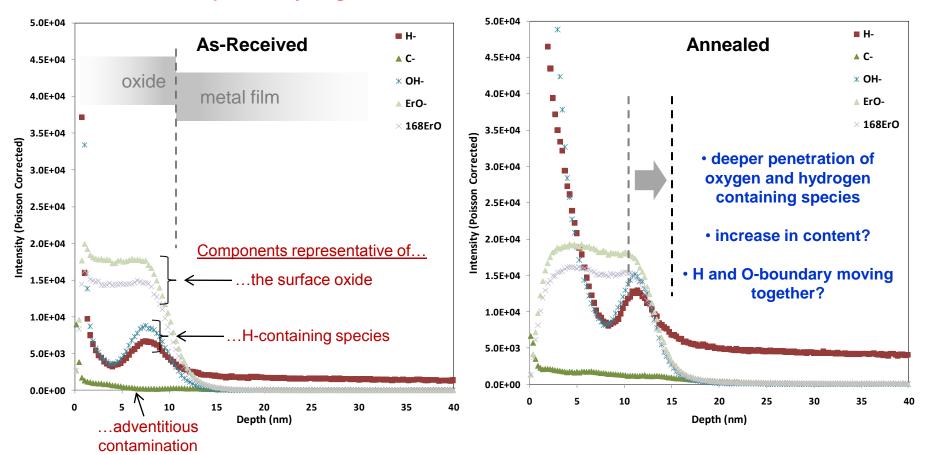


Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) Ion-TOF.SIMS 5



#### **ToF-SIMS** features

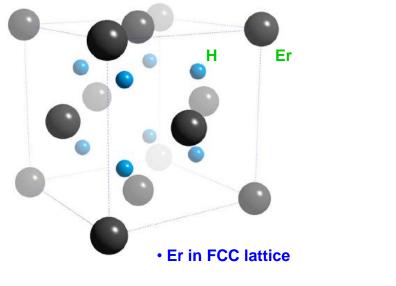
Sensitivity (ppm-ppb)


All elements can be observed (including H)

High mass resolution

Depth-profiling

# Hydrogen Containing Species in Near Surface Region


Annealing leads to deeper penetration of Oxygen into the bulk along with a larger peak in Hydrogen concentration at the metal/oxide interface.

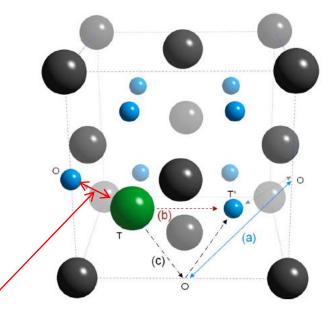


• other species (Sc, Ti, ...) not identified at any significant level

# O and H in ErH<sub>2</sub>

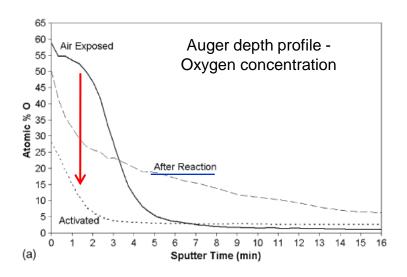
### Annealing leads to O diffusion into the bulk with concerted motion of H.






• O also prefers tetrahedral sites
and will displace H to occupy tetrahedral site

 H is displaced to octahedral sites (along edges of unit cell) (each O potentially creates an H<sub>oct.</sub> occupancy)


 $\bullet$  rate-limiting barrier for  $H_{\text{oct.}}$  transport is significantly less than for  $H_{\text{tet.}}$ 

• O movement proceeds via  $O_{tet} \rightarrow O_{oct} \rightarrow O_{tet}$  displacing H to  $H_{oct}$  with each step



### **Previous work**

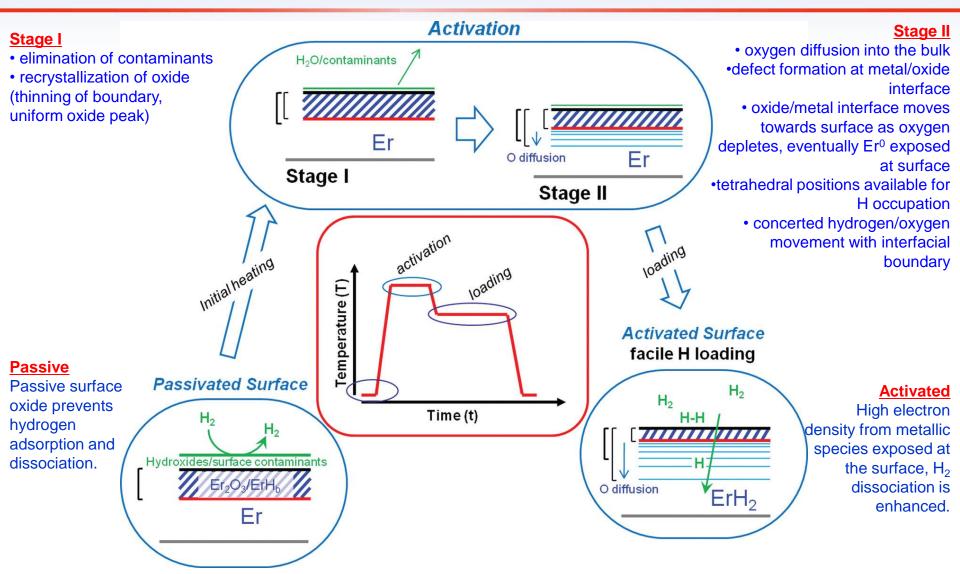
→ Surface oxide prevents H absorption and desorption
 → Hydrided films have shown a thick "oxide" layer



Tewell, King. App. Surf. Sci. 253 (2006) 2597-602.

Activation shows a decrease in oxygen at the surface,

but hydrogen reaction shows a large increase in total oxygen.


#### The manifestation of oxygen contamination in ErD<sub>2</sub> thin films

Chad M. Parish, <sup>a)</sup> Clark S. Snow, and Luke N. Brewer Sandia National Laboratories, Albuquerque, New Mexico 87185

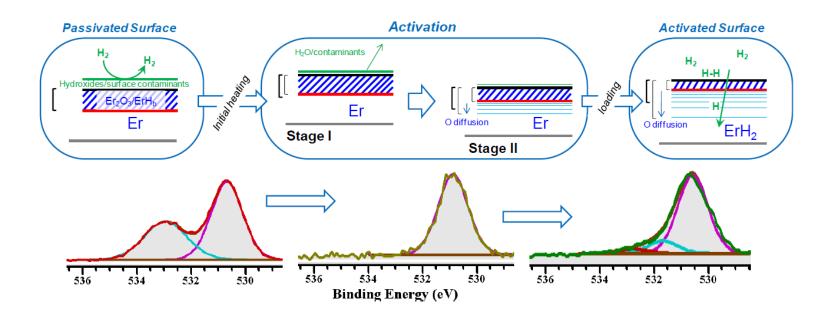
J. Mater. Res., Vol. 24, No. 5, May 2009

Erbium dihydride Er(H,D,T)<sub>2</sub> is a fluorite structure rare-earth dihydride useful for the storage of hydrogen isotopes in the solid state. However, thermodynamic predictions indicate that erbium oxide formation will proceed readily during processing, which may detrimentally contaminate Er(H,D,T)<sub>2</sub> films. In this work, transmission electron microscopy (TEM) techniques including energy-dispersive x-ray spectroscopy, energy-filtered TEM, selected area electron diffraction, and high-resolution TEM are used to examine the manifestation of oxygen contamination in ErD<sub>2</sub> thin films. An oxide layer ~30–130 nm thick was found on top of the underlying ErD<sub>2</sub> film, and showed a cube-oncube epitaxial orientation to the underlying ErD<sub>2</sub>. Electron diffraction confirmed the oxide layer to be Er<sub>2</sub>O<sub>3</sub>. While the majority of the film was observed to have the expected

## **Thermal Activation Description**



### **Conclusions**


The passive surface oxide prevents H loading, but can be degraded by thermal treatment.

"Activation" is degradation of the surface oxide by diffusion of oxygen into the bulk.

Oxygen occupies tetrahedral sites that H would prefer to occupy.

Reformation of the surface oxide after hydriding probably stabilizes the hydride over the long term.

Oxygen is incorporated during hydriding and thereby reduces H loading level.



## **Acknowledgements**

Jim Aubert Bill Wallace

**Craig Tewell Ryan Wixom** 

NIST – Dan Fischer Barry Karlin Cherno Jaye

ION-ToF – Nathan Havercroft Michael Fartmann Daniel Breitenstein

More details can be found at...

Journal of Applied Physics 109, 114911 (2011)