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AT HIGH PHOTON ENERGY
PHOTOIONIZATION IS NOT
GENERALLY A ONE-
ELECTRON PROCESS

This is due to correlation—the fact that initial
and final states in the photoionization
process are often not well-represented by
single-particle wave functions

This correlation takes many different forms
resulting in various consequences



Correlation in the final (continuum) state
wave function is generally known as
interchannel coupling—it is really just
configuration interaction in the continuum.

As a consequence, when there are
degenerate photoionization processes, I.e.,
from different atomic subshells, weak cross
sections can be altered significantly by
strong ones.



HIGH-ENERGY PHOTOIONIZATION
CROSS SECTIONS

In the single-particle approximation, the
asymptotic cross section for photo-
ionization of an n/ state goes as E-(*7/2),

Owing to interchannel coupling, it is found
that this dependence remains correct for
ns states, but the dependence becomes

E-2) for all other states.
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Initial state correlation can also have
Important consequences.

Example: Photoionization of an atom or ion
with outer-shell structure (4p)? 'S



Initial state wave function: a (4p)? + B (5s)?,
where ( is quite small.

Final state wave functions: 4pes, 4ped, 5sep

Cross section for leaving target in the 4p state,
4p—e€s, 4p—&d, behaves at high energy as E«92)

Cross section for leaving target in the 4s state,
4s—ep, behaves at high energy as E-(7/2)

Thus, at high enough energy, ionization plus
excitation will dominate!
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Photoelectron Angular Distribution

do/dQ = (o/4m)[1+ (B+AB)P,(cosB) +
(6+ycos?0)sinBcose + AP,(cosO)cos2¢
+ ucos2¢ + v(1+ cos2¢)P,(cos0)

Red—First order in photon momentum; dipole-
quadrupole interference

Violet—Second order 1in photon momentum-quadrupole
quadrupole and dipole-octupole interference
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ITonization of Endohedral Atoms

Calculations based on a variety of approximations
to describe the fullerene shell and its influence
upon the encaged atom



lonization of Endohedral Atoms:
Confinement Resonances

* Confinement resonances, oscillations in
the photoionization cross section, were
first predicted in the early 1990’s

* Their physical origin was explained about
a decade ago as the interference of the
photoelectron wave emitted directly with
the waves that scatter from the confining
potential.



Ar 1s photoionization cross section (Mb)
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Photoionization of Ne@C4, in the
vicinity of the 1s threshold
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Xe 4d photoionization cross section (Mb)
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Photoionization of Off-Center
H@C60
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Photoionization of Ne@CG60
including polarization nof the cage
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Correlation confinement resenances i
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Figure 2. Caleulated RPAE resulis {accounting for interchannsl couplines among
pheto-trans thone from 442, 5%, and Sp* subshells) for the 53 photoionization oroes
poction of X - —, fron Xe Id,‘-.rr"'_l-, o Kol o i the fromework of the prasent
spharical, short-range, fnite Usdckneas potentisl medol (o2 (w)] o X '&_:E:“q.; I
the guma as the provious but omitting ordinary confinement resomances in del — 1]
trnnsltlons « « = =, ||.-':"I|Hr.|'_3|‘:"|:...'_| = e-?i'l'l_“'l:u_':l. n'_""_:ic' i'-l"lng TR | ||hl-|-:-i-'.||.i.:.d'|i-:1r| s
weLion.



