	Measurements	MIMOSIS-2		BACKUP
00000	00000	0	0	00000000

Latest results from MIMOSIS-1

Roma Bugiel

postdoc at Hubert Curien Pluridisciplinary Institute in Strasbourg (IPHC) (on behalf GSI-IKF-IPHC (CBM-MVD) Collaboration)

09-10.02.2023

EURIZON

Introduction	Measurements	MIMOSIS-2	Summary	BACKUP
00000	00000			00000000
Overview				

1 Introduction

- CBM at FAIR
- MIMOSIS for MVD

2 Measurements

- MIMOSIS-1 activities
- Laboratory measurements
- Testbeams campaigns

3 MIMOSIS-2

Summary

BACKUP

CBM experiment at FAIR - introduction

• The Compressed Baryonic Matter (CBM) – fixed target experiment at FAIR in GSI

 \rightarrow to explore physics in high-energy heavy-ion collisions (QCD phase diagram at high baryon densities)

- The Micro-Vertex-Detector (MVD) vertex for CBM
 - built of four layers silicon MAPS
 - micro-tracking for e+e- pairs coming from light meson decays
 - exposed to high-rate non-homogeneous irradiation

Figure: Left: CBM, right: HADES experiments @ FAIR

	Measurements	MIMOSIS-2	BACKUP
0000	00000		0000000
MIMOSIS -	sensor for MVD		
MIMOSIS – CN	105 Monolithic Act	ive Pixel Sensor	
\rightarrow for CBM Mi	cro Vertex Detector.		

 \rightarrow also milestone for Future Higgs factories (5 μ s, 5 μ m, < 100 $\frac{mW}{cm^2}$, < 100 $\frac{mHz}{cm^2}$, 50 μ m thickness)

- based on ALPIDE sensor (ALICE ITS [1])
- major modifications made to comply with MVD requirements → physics or beam- structure driven.
 - 100 kHz Au+Au
 - occupancy gradient in space (almost 100%)
 - beam fluctuations in time

 $\bullet\,$ major challenge $\rightarrow\,$ high non-homogeneous data rate and radiation hardness

Physics parameter	Requirements
Spatial resolution	\approx 5 μ m
Time resolution	$pprox$ 5 μ s
Power consumption	$< 100-200 { m mW/cm^2}$
Material budget	0.05% X ₀
Radiation (non-ion)	$pprox 7 imes 10^{13} { m n_{eq}/cm^2}$
Radiation (ionizing)	\approx 5 Mrad
Data flow (peak hit rate)	$7 \times 10^5 / (mm^2 s) (> 2 Gbit/s)$

[1] M. Suljic. "ALPIDE: the Monolithic Active Pixel Sensor for the ALICE ITS upgrade", JINST C11025 (2016)

 \rightarrow **MIMOSIS-3** – final production sensor (around 2025)

MIMOSIS-1	 detector overvie 	W		
00000	00000	0	0	0000000
	Measurements	MIMOSIS-2	Summary	BACKUP

Parameter	Value
Technology	TowerJazz CIS 180 nm
Epitaxial layer	\sim 25 μ m, $> 1k\Omega\cdot$ cm
Sensor thickness	300 µm or 60 µm
Pixel size	$26.9\mu\text{m} imes30.2\mu\text{m}$
Pixel array	1024 $ imes$ 504 pixels
Sensitive area	pprox 4.2 cm ²
Array readout time	$pprox$ 5 μ s
Power consumption	$<$ 100 mW/cm^2

MIMOSIS pixels:

- DC-pixels \rightarrow ALPIDE-like
- AC-pixels \rightarrow foreseen improved radiation hardness with top bias possibility > 20V

4 submatrices with various pixel circuitry:

- $\bullet~$ B, C \rightarrow basic pixels architectures
- A, D \rightarrow 128-column matrices for analog pixel circuitry optimization (among with C18 prototypes) not shown here

MIMOSIS-1 fabrication reticules

MIMOSIS-1	 technology 		
00000	00000		0000000
	Measurements	MIMOSIS-2	BACKUP

- $\bullet\,$ TowerJazz CIS 180 nm technology \to providing several process modifications and some flexibility on epitaxial layer thickness.
- MIMOSIS-1 available on:
 - standard process (3 available wafers)
 - modified process [continuous n+ layer] (3 wafers)
 - gap in n-layer [n-gap] (3 wafers)
 - additional p-implant [p-stop] (3 wafers)
- sensors 300 $\mu m,$ also thinned to $\approx 60\,\mu m$

threshold [e]

threshold [e]

9/22

Test-beams	and analysis strate	egv		
00000	00000	0	0	0000000
Introduction		MIMOSIS-2	Summary	BACKUP

TEST BEAMS

- DESY 5 GeV e⁻
- CERN 100 GeV π^\pm
- measurements:
 - DC and AC pixels
 - back bias (0V, -1V, -3V)
 - top bias (3 V, 7 V, <u>10 V</u>, 15 V)
 - discriminator thresholds (<u>100-250 e</u>)
 - rotation angles (0, 30, 45, 60)

SENSORS:

- std, p-stop, n-gap process
- non-irradiated, X-ray irradiated, neutron irradiated, combined

SETUP :

- 6 MIMOSIS planes in stack (4 for tracking, 2 DUT)
- 15 mm distance between planes

ANALYSIS:

- TAF software, Corryvreckan foreseen
- one plane as DUT in time
- $\sigma_{tel} = 2.5 \mu m$, $\sigma_{ms}^{DESY} = 1.5 \mu m$, $\sigma_{ms}^{CERN} = 0 \mu m$

- AC pixels, p-stop process, all irradiation types
- detection efficiency > 99.5 % up to ≈ 200 e⁻ → the operational values of the discrimination thresholds around 100 e⁻ operation point fulfilling requirements
- \bullet fake rate \rightarrow < 10^{-6} per pixel per event \rightarrow work in progress
- similar results achieved for n-stop process

Cluster size	and spatial resolut	ion		
00000	00000	0	0	0000000
		MIMOSIS-2		BACKUP

spatial resolution \rightarrow **preliminary** results

work in progress, not all issues solved yet, alignment to be improved

- no major influence of radiation on cluster size (nominal doses)
- mean cluster size 1.2–1.7 pixel for studied discriminator thresholds, modified p-stop process
- pixel size: $\approx 27\,\mu m \times 30\,\mu m$
- spatial resolution for shorter edge shown
- almost no difference after X-Ray and neutron irradiation → resolution typically 5 - 5.5 µm for thresholds 150 e-
- about 0.5 µm larger after combined irradiation
- longer pixel edge $\rightarrow \approx 0.5 1\,\mu m$ more

VIIMOSIS 2	highlights			
00000	00000	•	0	0000000
ntroduction	Measurements		Summary	BACKUP

MIMOSIS-2 – highlights

- submitted in January '23, expected in 4-5 months
- validation of MSIS-1 a crucial milestone for its successor → spotted shortcomings improved (PLL PSRR, DACs, analog power grid enhancement, several others)
- new/other features finished: SEE hardening, on-chip clustering
- mostly based on the AC-coupled pixels: 896×504
- on 3 different processes (std, p-stop, n-nap) and 2 different EPI layer thickness (25 μm and 50 $\mu m) \rightarrow$ for radiation hardness vs spatial resolution optimization studies

00000	00000	0	•	00000000
Conclusions and	d plans			

 $\label{eq:mimosile} \begin{array}{l} \mbox{MIMOSIS-1} - \mbox{1st full scale prototype for MVD detector} \\ \rightarrow \mbox{its performance being validated by set of complex tests and measurements} \\ \rightarrow \mbox{milestone for MIMOSIS-2 development} \end{array}$

- $\textcircled{0} \ \textbf{9 test-beam campaigns in } 2021/2022 \rightarrow \textit{for SEE tests and essential detector} \\ performance validation \end{aligned}$
- **②** 3 various processes (std, n-gap, p-stop) tested and two pixel types (DC, AC) \rightarrow to find variants complying with the radiation tolerance and spatial resolution required for the MVD
- required radiation tolerance verified with nominal loads expected by experiment, but also beyond
 - above 99.5 % of detection efficiency after irradiation for AC pixels on p-stop [up to combined 5 MRad and $10^{14} n_{eq}/cm^2$]
 - $\bullet\,$ around 5 μm spatial resolution estimated up to $150\,e^-$ discriminator threshold
- $\label{eq:MIMOSIS-2} $$ MIMOSIS-2 $$ $$ $$ $$ final prototype incorporating all functionalities of final sensor and benefiting from corrected shortcomings observed with MIMOSIS-1 $$$
- MIMOSIS-2 expected back from foundry in middle of 2023

	Measurements	MIMOSIS-2		
00000	00000	0	0	•0000000

BACKUP

		MIMOSIS-2			
				0000000	
Front-end scheme					

MIMOSIS-1 pixel matrix microscope photography

- there are two types of pixels: DC (\rightarrow ALPIDE) and AC (top bias up to > 20 V)
- each pixel has a full amplifier shaper discriminator chain similar to ALPIDE
- in-pixel digital part is non-triggered, frame based readout (global shutter)
- each pixel has a pulse injection for calibration
- each pixel masking possibility

	Measurements	MIMOSIS-2	
00000	00000		0000000
Data nath			

- 3-stage buffering → to cope with in-homogeneous hit density
- Region readout out @ 20 MHz \rightarrow 5 µs time of full matrix readout
- Elastic buffer \rightarrow can store variable-size frames \rightarrow required because of the data rate fluctuations
- Variable number of outputs → lower bandwidth but lower power consumption

MIMOSIS-1 has 8 outputs each 320 Mb/s providing a required data throughput for MVD

more details: F. Morel, "The MIMOSIS pixel sensor", TIPP 2021

300

97

100

 DC excellent detection efficiency at least up to 250 e-

200

threshold [e]

250

97

100

150

 for AC pixels efficiency starts to drop for about 200 e- for $V_{bb} = -3V$

 $\rightarrow V_{bb} = -1V$ shows again very good performance for higher thresholds.

AC, bb scan /10V 100.5 PRELIMINARY 99. efficiency [%] 98.6 96 97.5 100 200 250 300 threshold [e]

200

threshold [e]

250

150

300

- ngap: $5 \text{ MRad} \rightarrow \text{chip not available}$ mixed \rightarrow data available, character, not done
- std epi → drop of efficiency after neutron and mixed \rightarrow as for AC
- **p-stop epi** \rightarrow neutron slightly worse than mixed \rightarrow to be investigated \rightarrow still > 99.5%

 n-gap epi → drop of efficiency after neutron \rightarrow still > 99.5 %

- std and n-gap epi → to be investigated because after mixed irradiation results not expected to be better than after only neutron irradiation (the same chip!)
- **p-gap epi** \rightarrow efficiency detection > 99.5% \rightarrow coherent results for this process

200

threshold [e]

250

150

100

300

- comparison of different epi layers only after ionizing irradiation 5 MRad
- both matrices shown excellent efficiency
- some degradation is observed for standard epi only, especially AC

- comparison of different epi layers only after neutron $10^{14} n_{eq}/cm^2$ fluence
- standard epi doping profiles shows degradation of efficiency for both pixel types
- for AC pixels only p-stop epi keeps the performance as for non-irradiated sensor
- $\bullet\,$ one chip statistic $\rightarrow\,$ highly probable that conclusions might change