Mechanical system integration of MIMOSIS-family

sensors.

- The Goal
- Sensors and QA
- Wire bonding and QA
- The Carrier of choice + potential risks
- Gluing procedures
- Mechanical "optimization" of the carrier
- Thermal optimization of the carrier
- Assembly JIGs
- Heat-sink
- Cooling liquids available
- Flex Print Cables

Michal Koziel EURIZON Annual Meeting, 2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072

- Sensors on both side of the carrier: 16 (front) + 12 (back)
- Sensor thickness ~50 μm
- Highly thermally-conductive sensor carrier
- Low material budget of ~0.5 % x/X_0
- R/O and powering by the means of FPC
- Al heat-sink
- Active cooling
- Vacuum compatibility

Sensors and QA

31.15 mm

- CMOS process
- Working name: MIMOSIS
- Thicknes: ~50 μm
- Power consumption: ~200 mW/cm²
- Availability:
 - Sufficient number available for prototyping
 - Sensors after "upgrade" will be available at the end of May '23 for thining and dicing
- Planned QA
 - Visual inspection
 - Probe tests
 - Yield before assembly
 - > Test time / sensor (currently ~24 hours)
 - Probe card design and production
 - PCB design @IKF + production externally, needles assembly @HTT-Dresden (2 pieces to start) => delivery this week
 - > IKF Proxy PCB
 - 1st version tested and running but...
 - > Upgrade of the IKF Proxy board required

Wire bonding and QA for the EURIZON deliverable

Wire bonding

 Not @IKF => only very old manual bonder (~2h / sensor). This is 3-4 weak to bond 28 sensors ...+ currently under "self" maintenance

Pull tests

- Destructive pull tests to optimize settings
- Simple manual pull-tester available at GSI and IKF
- Ideally, non-destructive pull tests for all assembled modules
- No machine available in the collaboration (?)
- Purchase (>20k€) => no budget

Pull tests only to optimize bonding parameters.

20 k€

The carrier

Property of TPG	Value
Young's modulus	1050 (36) GPa
Density	$2.26 \mathrm{~g/cm^3}$
Radiation length X_0	$19.03~\mathrm{cm}$
Surface roughness	not specified
Thermal expansion coefficient	$-1.00(25) \times 10^{-6}/\mathrm{K}$
Thermal conductivity	$1500 \ (< 20) \ W/mK$
Electrical Resistivity	$1 \times 10^{-4} \ (\Omega \ {\rm cm})$
Price tag (2020)	$0.15 ~ \text{€/mm}^3$

Price: ~500 USD gross / 100 x 100 mm²

Issues addressed:

Mechanical stability at low thicknesses

• 250 µm seems to unstable for handling if not fully supported => two single sided units glued together

Electric conductivity

• Sensors have to back-biased => TPG electrical insulation => Hydrophobic Parylene

Manufacturing

• Cut: no 90° corners, no straight edges

Adhesives and gluing procedures

Available adhesives (proved for radiation, outgassing, viscosity)

- RAL 247 custom made @RAL (preferred)
- Epo-Tec 301-2

Vacuum compatible gluing on Parylene – coated TPG

- Tests with glass dummies only
- Polished surface => better adhesive flow + less amount needed
- RAL-247 with wetting agent "solves" the problem but..
- ...curing time ofr the latest RAL-247 adhesive is very long (>2weeks @ +20 °C)
- Discussion with RAL plus order together with PANDA experiment soon

Issue: low wetting on Parylene-coated surfaces

Mechanical carrier "optimization"

TPG laser cut

1st try @GSI electronic lab =>

5 mm x 5 mm squares with aimed spacing of 100 μ m

Next => minimize the cone

Thermal carrier optimization

Measurement (at room temperature):

- Carrier: 117.5 mm x 130 mm TPG
- $\lambda_{x,y}$ =1500 W/mK, λ_z =15 W/mK (specs)
- P=2 x (87 mm x 87 mm) x 100 mW/cm²=15 W (Kapton heaters)
- Heat sink actively cooled
- ΔT=(11.5±0.5)K

CAD NASTRAN & ThSim:

- Carrier: 117.5 mm x 130 mm TPG
- $\lambda_{x,y}$ =1500 W/mK, λ_z =15 W/mK
- P=28 x (17.25 mm x 31.20 mm) x 100 mW/cm²=15 W
- Heat sink on fixed temperature
- ΔT=9.1 K

ThSim

Brought to you by:

Comparison:

- Small discrepancy, but same order of magnitude
 - > Optimize thermal junctons and $\lambda_{_{TPG}}$
- Good approximation, espically for low P (p_{mi-1}=43 mW/cm²)
- ΔT on heat sink not considered

JIGs

Requirements

- MIMOSIS form factor
- ESD safe
- Optimize carrier fixation
- Include 100 μ m spacing between sensors in a row

Design & production

- 3D print & usability check
- Design correction
- 3D print + check
- CNC machined Al production (IKF local workshop)
- Heat-sink = JIG option (not yet followed-up)

3D printed mock-up JIG for holding MIMOSIS sensors

Base idea:

Align sensor w.r.t. defined (0,0) point

Bring both together

Heat-sink

Accomplished:

- 2 predecessors optimized for flow and cooling liquid to carrier temperature gradient
- Tested successfully with TPG carrier => offers targeted temperature gradient across the carrier
- Since several months running routinely with NOVEC 649

To be done:

- Finalize the form factor for the TPG
- Re-design to include copper fittings to eliminate the use of Loctite sealing
- Explore option to use it as a JIG

Lack of cooling liquid @ T < 0 °C

Fluid	Normal conditio P=1atm °C	boiling ons or T=20	2- Phase proper ties at 20°C	Critical	point	Propert condition T=20 °C normal in case	ies at norr ons , P=1atm o boiling pr of liquefic	nal or ressure ed gas	Other propert	ies
	Boiling temperat ure (°C)	Boiling pressure (bar)	Latent heat (kJ/kg)	Critical temperat ure (°C)	Critical pressure (bar)	Density (kg/m3)	Heat capacity (kJ/kg*K)	Viscosity (µPa*s)	GWP	Prize €/kg
Water	100	0.023	2453	373.9	220.6	998	4.18	1001.6	-	0
Horee	49.1	0.026	96.2	160.7	^{10.7} X	1617	1.10	756.6	1	47,
C6F14	56.9	0.236	94.0	175.9	18.3	1703	1.03		9300	30,-
C5F12	29.8	0.695	95.0	147.4	20.5	1632	1.07	497.6	9160	
C4F10	-2.2	2.29	88.9	113.2	23.2	1516	1.07	230.9	9200	138,-
C3F8	-36.8	7.56	79.1	71.9	26.4	1352	1.15	180.6	8900	38,-
C2F6	-78.1	Super ci	ritical	19.88	30.5	Super critical		11100	100,-	
02	-78.4	57.29	152.0	30.97	73.8	773.4	4.3	66.1	1	0.015

a allow fluids used at OEDN

- 3M will not continue the NOVEC line
- Patent is expired => hope that other producers will take over
- At present => cooperation with CBM-STS and CERN Detector Cooling Section to find possible replacement / solution
- Outcome = unknown

Flex Printed Circuit Cable (FPC)

FPC Cables (thin, ~60 μ m / single layer, Cu – based)

Design

- Minimum number of signals ?
- No. versions ? (front/back)
- Partially single + partially double layer FPC
- Length(s) ?
- Design still this year
- Production @ILFA
- QA (done at ILFA)

Still to be understood:

- Sensor performance while running with (max ~25 cm) long FPC
- Decoupling capacitors

Outlook & Summary

Sensors and QA => sensors available, QA will start soon after delivery of the probe-card

Wire bonding and QA => hope for cooperation with GSI DL

The Carrier of choice + potential risks => base line chosen + some other options to be considered

Gluing procedures => RAL-247 must be optimized for its curing time or/and we are forced to cure at +50 °C

Mechanical "optimization" of the carrier => VERY promising , laser cut optimization missing

Thermal optimization of the carrier => simulations in agreement with measurements model

Assembly JIGs => sensor JIG to be produced in Al, carrier JIG R&D needed

Heat-sink => not far from a final design

Cooling liquids => replacement for 3M NOVEC 649 must be found

Flex Print Cables => R&D to be addressed