

ACTIVITIES ON MONOLITHIC ACTIVE PIXEL SENSORS IN 65 NM CMOS TECHNOLOGY

Szymon Bugiel EURIZON meeting 9-10.02.2023

TPSCO. 65 NM DEVELOPMENT TIMELINE

> TPSCo. (joint venture TJ & Panasonic) 65nm development done in the framework of WP1.2 EP R&D and ALICE ITS3

- o 2D stitching possible
- $\circ~$ Initially (MLR1) 5 metal layers, now 7 metals
- Collaborative effort undertaken by many institutes
 - CERN / CPPM / DESY / IPHC / NIKHEF / RAL / Yonsei / INFN / ...
 - $\circ~$ Very well coordinated by CERN in the spirit of joint development

> Where are we at the moment?

- First submission done already 2 years ago
- Numerous (very encouraging!) results are comming from MLR1 structures
- · Second submission finished recently
- Ongoing activities concentrated around:
 - preparation of the test setups for ER1 chips
 - kicking off the ER2 design (defining specs, collecting ideas, converging on the architecture)

	DESIGN	
ER2		

FIRST SUBMISSION (MLR1)

MLR1 OBJECTIVES:

- Technology validation
 - transfer 10-year experience from TJ 180nm to 65nm (proces modification: standard / n-gap / blanket)
 - detection performance
 - radiation hardness

Design know-how

- understanding the design kit limitation/features
- getting familiarity with IO structure

Delivering first batch of common functional blocks

- Temperature sensor
- Bandgap
- DAC
- LVDS/CML
-

Final approval/masks ordering early January 2021

- unified reticle size 1.5 x 1.5 mm²
- 55 different chips submitted!
- Chip delivered in July 2021
 - · extensive test program started straight away

From: "Ongoing activities and status of the 65 nm MLR1 submission" by W. Snoeys

MLR1: IPHC CONTRIBUTION

FOUR `CE65` CHIPS SUBMITTED:

- Each with a relatively small matrix (~0.5 and 1 mm²), but large enough to be suitable for beam tests
- Aimed to study:
 - charge collection properties
 - different front-end options

Variant A/B/C

- pixel pitch: 15um
- matrix size: 64x32
- Different sensing node geometries (lessons from TJ180)
 A → standard collection electrode
 B > n gon
 - $B \rightarrow n$ -gap
 - $C \rightarrow$ n-blanket
- Hosts also 8`b DAC`s prototypes

Variant D

- pixel pitch: 25um
- matrix size: 48x32
- basic collection electrode geometry

Variants A/B/C

Variant D

CE65 MATRIX DESIGN OVERVIEW

- Rolling shutter readout
- > Integration time down to 50 us (@40MHz clk)
- External digitization
- > Three sub-matrices:
 - AC coupled pre-amplifier [Amp (AC)]
 - DC coupled pre-amplifier [Amp (DC)]
 - DC coupled source-follower [SF (DC)]

SF pixel:

- The simplest approach
- Allows for a direct estimation of input capacitance

DC AMP:

- Self-biased
- Input node voltage determined by the pre-amp operating point
- In-pixel gain → potencially improved SNR

AC AMP:

- Sensing node depletion voltage can be applied independently and go over the supply voltage
- Slightly reduced gain in comparision with DC Amp due to parasitic capacitances

DC SF pixel

AC/DC pre-amp pixel

CE65: SELECTED RESULTS

- > ⁵⁵FeSpectra shown for Source-Followers sub-matrix with n-gap sensor
 - · gain correction applied to enchance spectra quality
 - resolution limited by the readout frequency (signal discharge between samples)
 - 5 peaks clearly visible:
 - Si(K_{α}) = 1.74 keV
 - Si(K_{α}) escape peak (FeK_{α} SiK_{α}=4.16 keV)
 - $Fe(K_{\alpha}) = 5.9 \text{ keV}$
 - Fe(K_{β}) = 6.49 keV
 - 2x Fe(K_α)= 11.8 keV
 - · similar behaviour observed on others structures with this sensor geometry
 - all peak positions well alligned with respect to theirs energies (linear front-end response)

> Input node capacitance for the SF-structre:

- Indirectly obtained from the measurements by:
 - taking into account gain calibration curve
 - assuming 3.6 eV for e-h pair generation
 - using the $^{\rm 55}{\rm Fe}$ calibration peak
- > Input node capacitance for the SF-structure (@ 3.3V of the depletion voltage):
 - C_{IN}^{A4} ≈ 1.9 fF
 - C_{IN}^{B4} ≈ 2.4 fF
- > By extrapolating this on AC-amplifier structure one can study capacitance evolution with the reverse bias apllied.
 - Maximal depletion reached around 4 5V
 - n-gap diode have gives higher capacitance when not completely depleted
 - in both cases ~2fF is in reach

CE65: SELECTED RESULTS

DIODE GEOMETRIES COMARISION BASED DC-AMP SUBMATRIX:

> Reverse bias:

- 1V (self biased)
- far from maximal depletion
- > Total cluster energy depends on the diode geometry
 - ~40% larger gain of a standard structure •
 - n-gap diode has larger capacitance when not depleted

> Significant difference in the charge sharing

- n-gap diode:
 - dominated by single pixel depositions
 - seed energy spectrum similar to cluster energy spectrum
- standard diode: .
 - significant charge sharing
 - almost no single pixel depositions
- effect very pronaunced because of relatively small • depletion voltage

N-GAP DIODE:

STANDARD DIODE:

CLUSTER ENERGY hhitcharge1 Entries Mean Std Dev

6000

8000

Cluster signal [ADU]

6519

5384

1586

10000 12000

2500

2000

1500

1000

500

2000

4000

SEED VS NEIGHBOURS

CE65: BEAM TEST

- > Numerous test beams performed:
 - Significant effort from ALICE ITS3 team
 - Tracking made with Alpide telescope
 - Aimed to measure all different MLR1 devices (including CE65)
 - CE65 readout integrated with the telescope infrastructure and validated
- Beam data analysis is still ongoing:
 - Cluster charge distribution MPV around 600e⁻
 → epi-layer thickness ~11 um
 - ightarrow inline with what was declared

- **Excellent detection efficiency** already proven with others structures:
 - Maintained up to 10¹⁵ 1MeV n_{eq} cm⁻²
 - See: DPTS paper <u>https://arxiv.org/pdf/2212.08621.pdf</u> and APTS <u>https://dx.doi.org/10.1088/1748-0221/18/01/C01065</u>

SECOND SUBMISSION (ER1)

ER1 OBJECTIVES:

- Develop stitching know-how
 - Yield estimate
 - Defects "masking"
 - Power distribution
 - Sensor depletion
 - Waferscale spreads
 - Methodology

Continue R&D program

Second batch of small exploratory detectors -- CE65v2, ...

MOSS

MOST

• SEU chip

> Additional set of functional blocks:

- PLL
- LDO
- DATA LINKS
-
- □ Final masks approval November 2022
 - Production proces has already begun
 - Expected delivery date end of April
- $\hfill\square$ Intensive work on tests setups preparation ongoing
 - $\hfill\square$ Goal is to be ready before chips arrival
 - Essential input for a ER2 design

*(more comming up in slide 11.) Wafer-scale detector is a key component for the ALICE inner tracker upgrade

- 1D-stitching is enough (along the beam axis)
- Reticle composed of:
 - endcap fields printed only on the outer edges
 - middle field repeated 10 times across the wafer

From: "EP R&D WP1.2 Status Report, 01/06/2022" by W. Snoeys

MOSS, MOST, CE65v2 HIGHLIGHTS

MOSS: (MONOLITHIC STITCHED SENSOR)

- $\circ~$ Design lead by CERN
- o 14 mm x 259 mm
- \circ $\,$ Two pixel pitches: 18um and 22.5um $\,$
- o Modification of well established, Alpide-like readout scheme (digital)
- o 67 separate power domains
- Local defects mitigated by switching off given power domain (1/20 of full chip)
- Conservative layout (Design For Manufacturing rules fullfiled)

MOST: (MONOLITHIC STITCHED SENSOR WITH TIMING)

- \circ Design lead by CERN
- o **2.5 mm x 259 mm**
- Pixel pitch: 18um
- Asynchronous hit-driven readout (ToA + ToT information)
- \circ 4 power domains
- \circ $\;$ High granularity local power gating to mitigate defects $\;$
- \circ $\,$ High local density preserved

CE65 v2:

- o 48x24 pixels (AC Amp)
- Rolling shutter readout
- $\circ~$ 15 flawours:
 - pitch 15/18/22.5um
 - 3 sensor geometries (standard, gap, blanket)
 - squared / hex-squared pixel arrangment

TOWARDS ER2

ER2 OBJECTIVES:

• Deliver a first prototype targeting ALICE ITS3 (Inner Tracking System)

ITS UPGRADE (ITS2 \rightarrow ITS3):

- o Replacement of 3 inner-most tracking layers
- Significant reduction of material budget by:
 - Removing water cooling system
 - Removing flex cabeling

- \rightarrow power consumption < 20 mW/cm2
- Removing suport leaders
- \rightarrow power distribution / data links on chip
- \rightarrow use stiffness of bend silicon (<50um thick & wafer scale detector)

Only silicon left

- First truly cilindrical tracker
- Many challanges imposed on detector
- → Exploring completely new teritories
- Input from ER1 structures measurements becomes critical

Dummy silicon model From: "ALICE ITS3 – a next generation vertex detector based on bent, wafer-scale CMOS sensors" by M. Mager https://indico.cern.ch/event/1071914

SUMMARY

- SIGNIFICANT EFFORT MADE TO VALIDATE THE TECHNOLOGY WITH THE MLR1 STRUCTURES:
 - $\circ~$ Lessons learned with TJ180 successfully transfered to 65nm
 - $\circ~$ No showstopper discovered up to now
 - $\circ~$ Radiation tolerance and detection efficiency already proven
 - Spatial resolution below 4 um achieved with the digital pixel
 - Efforts on many different fronts
 → a lot of experience and confidence gained
 - Detailed studies still provide feedback important for the next designs

> PRODUCTION OF ER1 STARTED RECENTLY:

- o Gathering stitching know-how
 - Methodology
 - Design
 - Chips handling & testing
 - Yield
- $\circ~$ Very important input for ER2
- Continuation of R&D activities
- $\circ~$ Widen set of silicon proven functional blocks

> NEXT STEP - ER2 DESIGN:

- Defining specs
- Collecting all the learnings from ER1
- $\circ~$ Isolating fields for improvement

For more

...

- M.Šuljić at al. "Digital Pixel Test Structures implemented in a 65 nm CMOS proces" (<u>https://arxiv.org/pdf/2212.08621.pdf</u>)
- S. Bugiel et al. "Charge sensing properties of monolithic CMOS pixel sensors fabricated in a 65 nm technology" (<u>https://doi.org/10.1016/j.nima.2022.167213</u>)
- G. Aglieri et al., "Developments of stitched monolithic pixel sensors towards the application in the ALICE ITS3" (<u>https://doi.org/10.1016/j.nima.2023.168018</u>)
- W. Snoeys, "Optimization of a 65 nm CMOS imaging technology for monolithic sensors for high energy physic" PIXEL 2022 (<u>https://indico.cern.ch/event/829863/contributions/5053903/</u>)
- M. Mager, " ALICE ITS3 a next generation vertex detector based on bent, wafer-scale CMOS sensors" (https://indico.cern.ch/event/1071914)
- S. Senyukov, "Exploration of the TPSCo 65 nm CMOS imaging process for building wafer-scale, thin and flexible detection layers for the ALICE Inner Tracking System upgrade (ITS3), iWoRiD 2022"

BACK-UP

CE65 CALIBRATION

READOUT CHAIN CALIBRATION:

- Precise determinatin of conversion factor between the ADC units and input voltage level made using SF submatrix
- Monitoring baseline shift while scanning over the $\mathrm{V}_{\mathrm{RESET}}$

- · Very small influnce of the back bias on the readout gain
- Significant shift of the DC levels after applying back bias

 → source followers out of dynamic range at VBB>1V
 → probably even faster for the amplifier based pixels
- Almost impossible to use back bias to enhance the depletion
- All results presented for VBB = 0V

BASIC DIODE [A4]:

OPTIMIZED DIODE [B4]:

CE65 READOUT SYSTEM

DAQ BOARDS:

- PCB and firmware developed by the team from Cagliari University & INFN
- Common readout system for multiple MLR1 devices (CE65, APTS, DPTS)
- Based on Altera Cyclone IV FPGA
- Readout speed up to 40 MHz
- USB protocol used for the communication with the PC
- Readout software integrated into the EUDAQ framework (compatibility with the beam test infrastructure)

PROXIMITI BOARD:

- PCB developed by the team from Cagliari University & INFN
- Specific for a given device
- Provides all chip biasing
- CE65 proximity equipped with fast 16-bit ADC

CHIP BOARD:

- PCB developed at IPHC
- Analog output buffering
- Decoupling

SENSOR DEPLETION DEVELOPMENT

Sensor depletion can be developed by:

- Applying negative voltage to the substrate (back-bias)
 → not possible for this chip because of accompaning operating point shifts
- Utilizing AC coupling and directly biasing the collection electrode (HV_RESET)

For both sensor geometries depletion develops up to 5V

- Above 5V, amplitudes staurates at the same level
 → for depleted device the detector capacitance does not depend on the sensing node geometry
- Optimized diode geometry has noticeably larger capacitance when not depleted

> For DC sub-matrixes only single points available

- AC-Amplifier: ~3 times higher gain than SF
- DC-Amplifier: ~5 times higher gain than SF

BASELINE AND NOISE

BASELINE:

- Clearly visible sub-structure on the baseline map
 → as expected from the design
- No significant differences in the baselines for different diode flavours
- Edge pixels degradation slightly more pronounced for a standard structure

BASIC DIODE [A4]:

NOISE:

- ENC calibrated based on the ⁵⁵Fe peak position
- No significant differences between the sub-matrices
- ENC measured to be in range 15 e⁻: 25 e⁻ (depends on the settings optimization, biasing conditions)

OPTIMIZED DIODE [B4]:

CHARGE SHARING BETWEEN NEIGHBOURING PIXELS

> Exemplary plots shown for DC-Amplifier submatrix

· Very similar behaviour observed on others structures

> Results inlined with previous observations:

- Basic diode:
 - significant charge sharing
 - seed carries less than half of the total charge
- Optimized diode:
 - charge sharing highly suppressed
 - charge concentrated on single pixel \rightarrow more operating margin

> Consequences:

- Basic diode:
 - one may expect outstanding spatial resolution
 - harder to maintain high efficiency
- Optimized diode:
 - charges "guided" directly to the closest collection electrode

that indicates:

 \rightarrow higher electric field

- \rightarrow faster collection (higher ToA resolution)
- \rightarrow more resistant to displacement damages
- Indirect hints \rightarrow to be verified in direct measurements!

BASIC DIODE [A4]:

Average contribution to cluster signal

OPTIMIZED DIODE [B4]:

0.35 0.3

DIODE GEOMETRIES

- TowerJazz CIS 180 nm technology → providing several process modifications and some flexibility on epitaxial layer thickness.
- MIMOSIS-1 available on:
 - standard process (3 available wafers)
 - modified process [continuous n+ layer] (3 wafers)
 - gap in n-layer [n-gap] (3 wafers)
 - additional p-implant [p-stop] (3 wafers)
- $\bullet\,$ sensors 300 $\mu m,$ also thinned to $\approx 60\,\mu m$

 \rightarrow expected improved radiation tolerance

W. Snoeys et al., NIM-A Vol.871 (2017) 90–96. Munker, Vertex 2018, Status of silicon detector R&D at CLIC