EURIZON Annual Meeting 2023

Task 2.5 Status of Forward Wall

Lukáš Chlad^{1,\$}

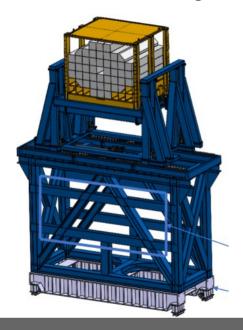
¹ Eberhard Karls Universität Tübingen, Physikalisches Institut

^{\$} formerly at NPI CAS Řež & FNSPE CTU Prague

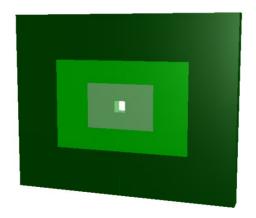
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072

Team structure

Czech Technical University

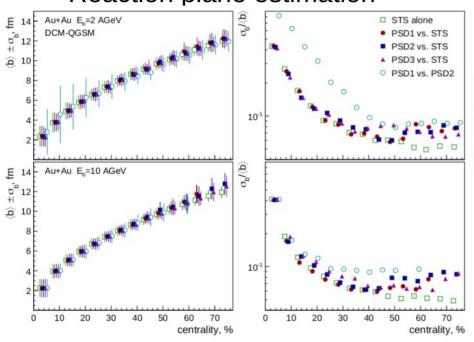

- Petr Chaloupka
- Petr Chudoba readout electronics
- Radim Dvorak (starting Ph.D.) response sim.
- Ondrej Hofman (Msc.) FLUKA backround studies
- Kristyna Haismanova (Bc.) SiPM testing

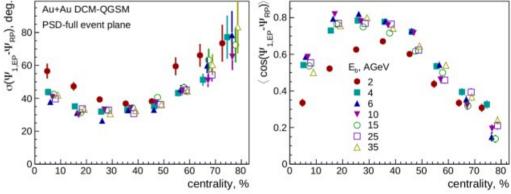
NPI, Řež


- Andrej Kugler task leader
- Lukáš Chlad until 31.10.2022
- Leszek Kosarzewski since March 2023?
- **GSI** physics performance studies
 - Ilya Selyuzhenkov
 - Lukáš Chlad since 1.11.2022
 - Oleksii Lubynets
 - Frédéric Linz

Urgent need of PSD replacement

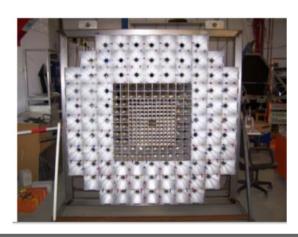
- Projectile Spectator Detector
 - Hadronic zero degree calorimeter


- Forward Wall
 - Scintillator hodoscope

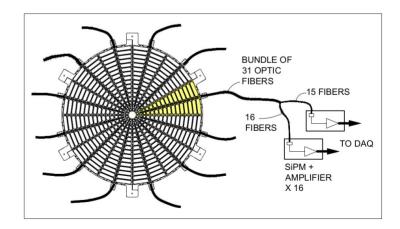

	110	109	1	08	107			106				51				52			53		54	55
	105	104		102		102			101			45			47			48		49	50	
	100	99	96	95	94	93		92		,	91		36		37		38 3		40	41	- 44	45
			90	89	88	88 87		86		1	85		30		1	32		33	34	35		45
	98	97	84	83	82			76			73		19	20		22 16		27 28	28	29	- 42	43
			81	80	79	60		58				6	7	8	9	10	11	24	25	26		
	153	152	136	135	134			113				173	166	167				189	190	191	207	208
			139	138	137								178					192	193	194		
	155	154	145	144	143 142		_	141			140		195		96	197		198	199	200		
			151	150	149	148		147		1	146		101	202		203		204	205	206	209	210
	160	159	158		157			156				211			212			213		214	215	
	165	164 163			162			161				216			217			218		219	220	

Physics expected from PSD

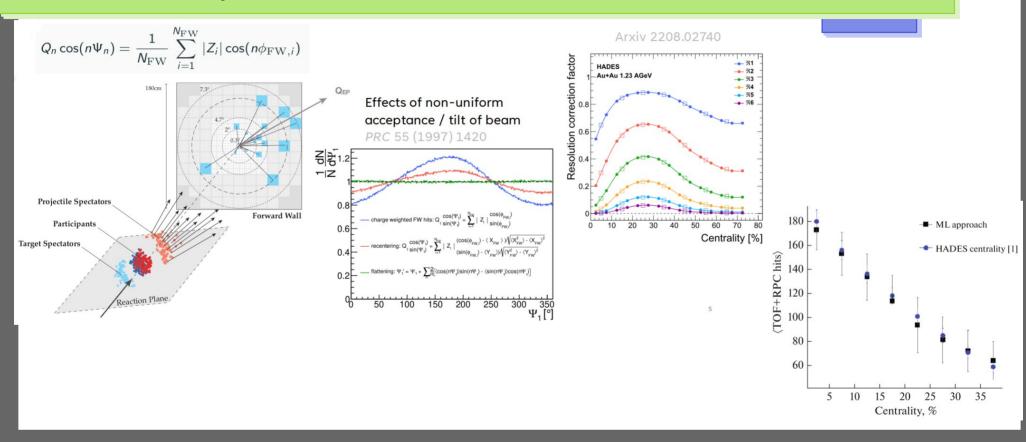
Reaction plane estimation

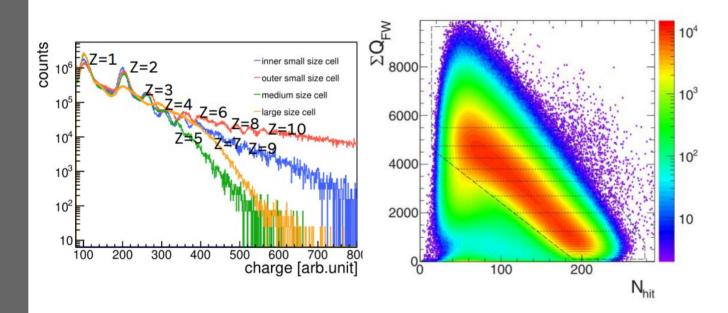


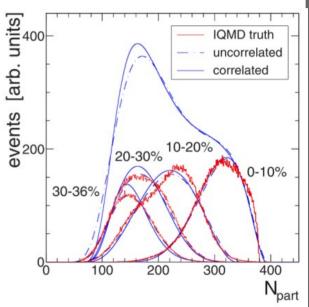
Centrality determination



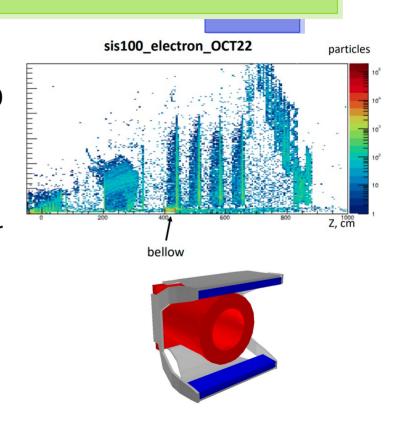
Scintillator detectors @ HI experiments


- Forward Wall @ HADES
 - Read-out by PMTs
 - Both Event-Plane estimation and Centrality Determination


- Event Plane Detector @ STAR
 - Read-out by WLS fibers leading to SiPMs
 - Only EP estimation



HADES experience – EP estimation


HADES experience – Centrality determination

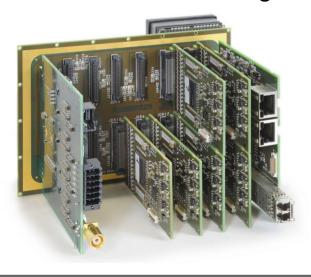
Forward Wall challenges

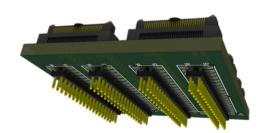
- Radiation hardness
 - Large dose expected (very high rates up to 10 MHz collisions, heavy fragments detection necessary)
 - Importance of FLUKA beam pipe simulations
 - Sensitive electronics can be positioned further away using the optical fibers guiding light
- Fast read-out
 - Due to high rates
- Reasonable budged and Time constrain to have detector ready first day of CBM operation

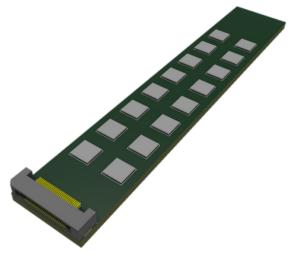
Module components

Scintillator material

- plastic ZnS scintillator not rad. hard, cheap replaceable
- LYSO crystal (offered from Juelich) central part
- Light guide fibers
 - Direct attachment to scintillator (CALICE, HADES iTOF)
 - WLS + optical fibers (STAR EPD)
- SiPMs
 - Hamamatsu (heavily tested for PSD)
 - ON Semiconductor (in cooperation with eRHIC detector development)

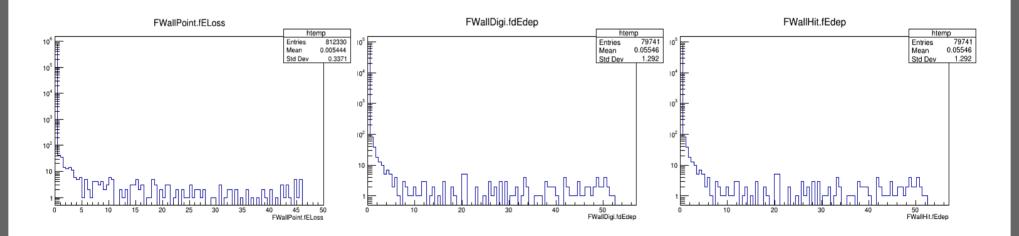





Test board

Read-out electronics

- Reuse as much as possible
 - Use DiRICH boards concentrators
 - Board holding SiPM and convetor board to match DiRICH



Software development

- Necessity to optimize design of FWALL
- Set of simulations need to be carried out => functional chain (transport, digitization, hit reconstruction, physics performance analysis)

Plans for 2023

- Simulate radiation conditions and perform tests (probably next year @mCBM) of scintillator material & SiPM
- Study the influence of beam-pipe (especially the bellow)
- Optimize design (size and position of scintillator cells, size of detector and beamhole)
- Finalize and review design of read-out electronics
- Collaborate with eRHIC colleagues on SiPM testing

