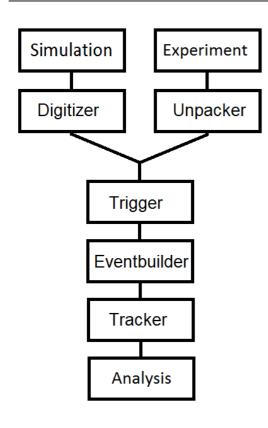
Online Software for CBM


Dominik Smith

EURIZON Meeting Darmstadt 9. Feb. 2023

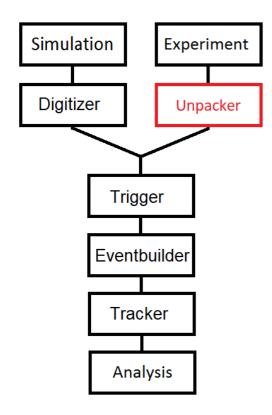
Online Software for CBM

Challenge:

- Heavy-ion collisions at unprecedented interaction rates at CBM.
- Requires novel read-out and data acquisition concept with self-triggered front-end electronics and free-streaming data.

Goal: Make readout chain "online ready".

- Implement "algo" classes in cbm::algo namespace.
- Smallest (algorithmically) possible detector unit (parallelizable).
- ROOT-free. Separate monitoring. Optimize for speed.


Steps:

- Survey and cleanup of existing classes.
- Porting to cbm::algo.

This talk: Overview of completed and ongoing work.

Unpackers

Principle:

- Multiple CRIs (or DPBs) connected to FLES.
- Multiple FEBs connected to one CRI.
- Multiple ASICs on one FEB.
- Multiple sensor channels send signals to one ASIC.

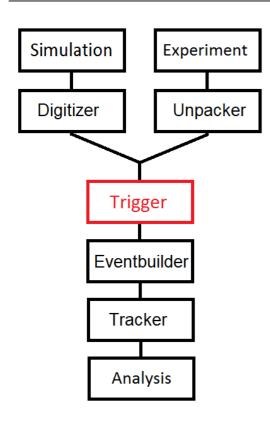
First Level Event Selector

Data Processing Board

Common Readout Interface

Front End Board

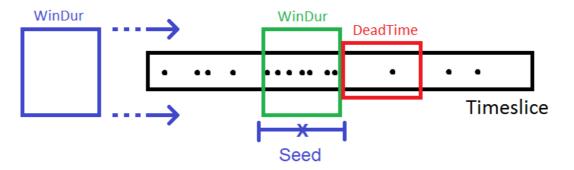
Unpacking: Translate messages to universal format


- Local addresses are specific to current level in the hierarchy.
- Local times are cyclical w.r.t. special messages.
 - go from local to global time and addresses.
- Also: apply calibration for charge
- In cbm::algo: One unpacker per timeslice component (CRI)

Completed: Unpackers for STS, MUCH, TOF, T0

Ongoing: Unpacker for TRD

Trigger algorithm

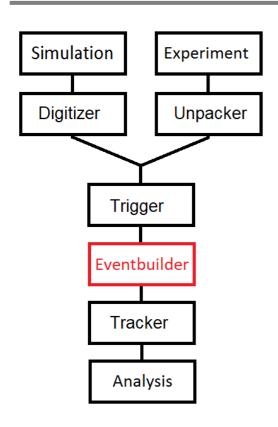

Triggering:

("digis" = unpacked messages)

- Identify "points of interest" in digi stream, i.e. "event candidates".
- Precursor to eventbuilding.

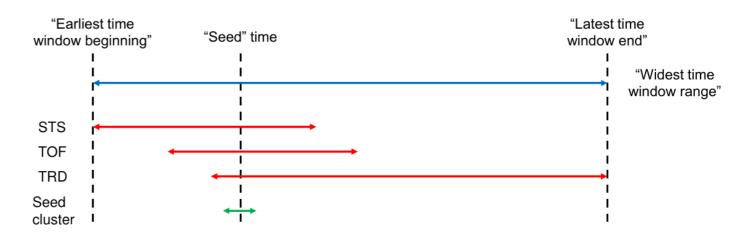
Principle:

 Shift "sliding window" through digi stream (single or multiple trigger detectors). Trigger when digi count exceeds defined threshold.



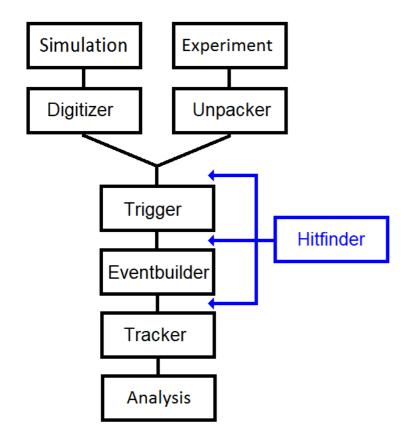
Completed:

"Time cluster trigger" algorithm in cbm::algo.


Eventbuilder + Event selector

"Time window" eventbuilder:

- Collect digis from pre-set time intervals around trigger.
- Window boundaries chosen separately for detectors.


Event selector:

- Accept / reject events based on cuts
- Currently: minimum number of fired TOF stations / STS layers

Both completed and ready for use!

TOF Hitfinder

Hit finding:

- Sometimes single particle hit makes multiple digis.
- Reconstruct physical hits from digis.
- Intermediate step.

New classes for TOF:

- "HitFinderTof" in cbm::algo
- ROOT-free except ROOT::Math classes (Rotation3D, XYZVector, not TObject).
- One object per RPC.
- Based on CbmTofSimpleClusterizer

RPC: resistive plate chamber;

TOF Hitfinder

Principle:

- CbmTofHit objects from clusters of digis within one (for each) RPC.
- For each timeslice:
 - 1) Calibrate digis (apply offset to time, gain and walk correction to charge)
 - Sort digis by SM, RPC and channel.
 - 3) Loop over channels for each RPC.
 - Build digi clusters:

- Require digi on each "side" of channel
- Add others in spatial and temporal proximity

- 5) Build hits from clusters:
- Hit X and T from charge-weighted digi distro
- Time error from detector resolution
- Channel address of weighted position

New class ready for use!

RPC: resistive plate chamber; SM: super module;

FAIR MQ Devices

FAIR MQ: Message Queuing Library and Framework

- System for large-scale ("online") data processing workflows.
- From FAIR MQ doc:
 - asynchronous message passing abstraction (of different data transport technologies)
 - efficient data transport service (zero-copy, high throughput)
 - data format agnostic
 - basic building blocks for higher level data processing workflows.

In practice:

- FAIR MQ "devices" send / receive serialized messages through TCP channels.
- Optionally: Monitoring data sent to HTTP server.

Completed: MQ devices for unpackers, trigger, eventbuilder

Conclusions / Outlook

- Not covered here: Tracking (V. Akishina, S. Gorbunov, S. Zharko)
- Implementation of online software well underway.
- See also: Summary talks by I. Selyuzhenkov and J. Eschke.

Thanks for listening!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072