

EURIZON detector school N. De Filippis Politecnico and INFN Bari on behalf of the WP7 community

February 9-10, 2023 EURIZON Annual meeting 2023

Detector School – July, 17–28, 2023

for training young scientists on state-of-the-art particle detection technologies in the fields of particle-, heavy-ion- and neutron-physics

De
Q
Co
De

Website: https://indi.to/EURIZONdetschool

E-mail: EURIZON.detschool@cern.ch

International Organizing Committee:

Lucie Linssen, Eva Sicking (CERN); Simon Spannagel (DESY); Francesco Picotelli (ESS); Jürgen Eschke, Itaki Kashelarhki, Christan J. Schmidt (GSI); Marcello Abbresco, Notola De Filippis (INRN-Ban), Gianitugi Chinetto (INRN-Ferran), Gami Bencivenni (INRN-Racat), Marghente Prinverse (INRN-Lacoe); Michael Düren, Marc Strickert (JLU Giessen); Mustafa Schmidt (Univ Wubcretta)

Detector readout & Data acquisition
Quantum sensing
Communication in science
Detector physics in Georgia

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 871072 Design: M. Düren, Photos: CERN

The EURIZON school on particle detector technologies will take place at Kutaisi International University (KIU) in Kutaisi, Georgia, on July 17-28, 2023.

https://www.kiu.edu.ge/eng/home

Full support by the Georgian Minister of Science and Education Prof. Dr. Mikheil Chkhenkeli

Website of the school:

http://indi.to/EURIZONdetschool

The deadline for applications is March 28, 2023.

Features of the school:

- The EURIZON Detector School focuses on state-of-the-art particle detection technologies in the fields of particle-, heavy-ion- and neutron-physics.
- The main programme of the school comprises
 - morning lectures by world experts in their fields
 - hands-on exercises on various technologies in the afternoons
- Students will also be given opportunity to present their work.
- Social activities are organised during evenings and on the weekend.
- Full funding (including lodging and international travel) can be offered to a limited number of students.

NB: In case safety imperatives will require a relocation of the school, the school will be organised on the same dates at the University of Wuppertal, Germany.

Lectures topics:

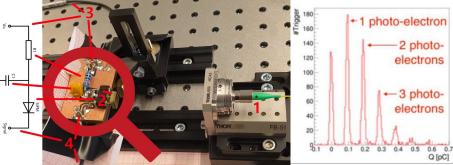
- Calorimetry E. Sicking, R. Ferrari
- Characterization of detectors B. Ristic
- Communication in science, presentation skills D. Barney
- Evolution on working detector systems from R&D to construction, operation and performance D. Abbaneo
- Gaseous detectors M. Abbrescia, M. Bianco
- Neutron detectors B. Guerard
- Non-collider detectors B. von Krosigk
- Particle identification M. Schmidt
- Photon detection S. Gambetta, S. Jakobsen
- Quantum sensing M. Doser
- Readout- FPGA- trigger- DAQ- synchronization F. Pastore, S. Lange, J. Hegeman
- Silicon detectors M. Deveaux, S. Spannagel
- Tracking J. Baudot

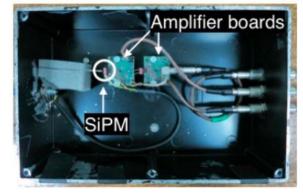
Hands-on exercises:

- Drift Tubes characterization N. De Filippis, M. Primavera, B. D'Anzi
- MPGD lab. G. Bencivenni, M. Giovannetti, G. Cibinetto, S. Gramigna
- ROOT tutorial M. Schmidt et al.
- Geant 4 tutorial M. Schmidt et al.
- Cosmo boxes M. Schmidt et al.
- SiPM characterization A M. Schmidt et al.
- SiPM characterization B L. Linssen, E. Sicking et al.
- Silicon Pixel characterization L. Linssen, E. Sicking et al.
- Testbeam data analysis with Silicon Pixel S. Spannagel et al.
- Simulation of silicon pixel detector and spatial resolution S. Spannagel et al.
- Landau distribution with Silicon Strip S. Spannagel et al.
- Do It Yourself Particle Detector O. Keller

Some info in the next slides

Exercise: SiPM characterization

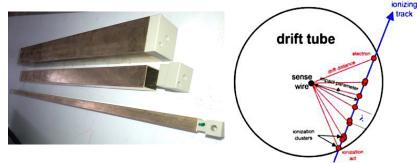

CERN

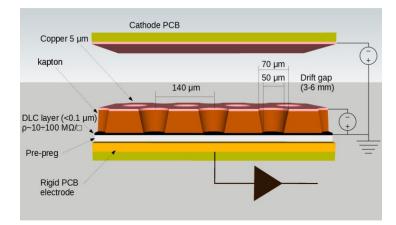

- Description:
- The students will learn about the basic principles of silicon det. and perform meas. with hybrid pixel-detector assemblies
- the measurement programme includes electrical characterisations, calibration of the energy response using radioactive photon sources, as well as detection of m.i.p from a radioactive electron source (or cosmic rays).

Exercise: SiPM characterization

Wuppertal-Giessen Description:

- teaching how to perform measurements with SiPMs in combination with a fast oscilloscope
- allows to measure discrete photo-electron spectrum because of the high gain

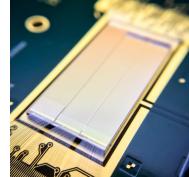



Exercise: Characterization of Drift Tubes INFN Bari and Lecce

Description: characterization of drift tubes with different cell size and different material wires and diameter wires

Exercise: MPGD lab INFN Frascati and Ferrara

Description: the main goal of the MPGD hands on lab is the measurement of the efficiency (+ ...) of a μ -RWELL with a cosmic ray telescope. Additional tests can be done with a β source or X source.

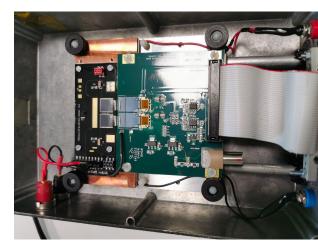

Exercise: Silicon pixel detector characterization

Description: The students will learn about the basic principles of silicon detectors and perform measurements with hybrid pixel-detector assemblies.

Exercise: Testbeam data analysis with Silicon pixel detector characterization. - DESY

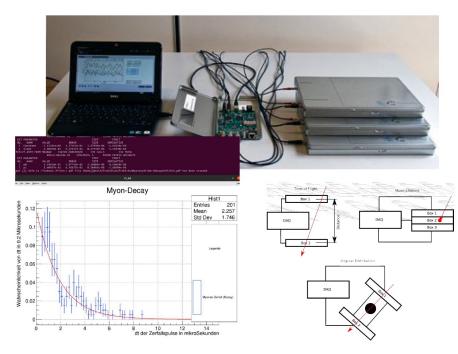
- to understand the working principle of silicon pixel detectors
- to analyze a set of test-beam data in order to characterize a pixel sensor prototype and investigate its performance

This is a pure software/analysis lab!



Exercise: Landau distribution with Silicon strip detector - DESY

Objectives:


- Fully integrated table-top experiment with Silicon strip sensor (ATLAS Strip Tracker) with readout chip (Beetle) & DAQ system (Alibava) used to perform calibration measurements (noise, pedestals) with the sensor and do measurements with a radioactive source (e.g. Sr90)
- final goal of the lab: to reconstruct the Landau charge distribution from the data by subtracting pedestals from the data, and by plotting the ADC values obtained

Exercise: Cosmo boxes Wuppertal-Giessen M. Schmidt Description:

 using setup containing 3 scintillators, readout board and laptop for measuring the properties of cosmic muons

A well organized programme for the Eurizon school includes

- lectures by world experts in their fields
- hands-on exercises on various technologies

Share and subscribe -- the deadline for applications is March 28, 2023. The decision about admission will be sent by email by end-April 2023.

Enjoy the school !

