

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072

WP4 Task 4.4

C. Vaccarezza

on behalf of the Task 4.4 Team:

D. Alesini, G. Geloni, A. Giribono, S. Molodtsov, M. Zobov, S. Tocci, C. Vaccarezza

Outline

The 4.4 task of the Eurizon project

Previous scheme and update proposal

LNF expertise

To do list

Task 4.4: Linac development [INFN, EuXFEL, DESY]

INFN has great experience in the development, construction and operation of high-energy high-brightness electron Linacs.

RF-guns with thermionic cathodes, photogun and regular accelerating structures in S-C band were developed in LNF INFN.

We plan a common study for a 6 GeV Linac based on S-C band technology to serve as an FEL driver and, potentially, as top-up injector for synchrotron X-ray storage rings

Simulations are planned to be carried out together with a virtual collaboration between INFN, DESY and the European XFEL.

A workshop including FEL developers and possible users will be organized by, and held at the European XFEL, where the study will be disseminated.

Ukrainian scientists from institutions that can profit from the project will be invited with special attention to young individuals.

- Deliverable 4.19 (D99) (M46, INFN) Study report on a compact 6GeV high-brightness Linac (C-band) for top-up injection in storage rings and FEL applications
- Deliverable 4.20 (D101) (M48, EuXFEL) Report from the workshop
- Milestone 58 (M40, INFN) Simulation codes benchmark completed

The previous scheme:

Top-up linac layout:

two RF-guns - photo-gun and thermionic gun (like Super-KEKB, MAX-IV, planned for *FCC-ee, Spring8-Upgr., PLS-Upgr.*) and 80-100 regular sections

N.B. The previous Task 4.4 team was based on 15 people, now on 7.

Previous scheme was based on S-band Accelerating structure

SLAC-type TW DLW: 3-m-length for 80MV/sec

-Low coupling coefficient -Long RF pulse necessary -High beam loading effect -Wide spectrum

-Compression is possible!

Biperiodic Accelerating Structure (BAS) SW: 2-m-length for 75 MeV/sec

- -High coupling coefficient
- -Shorter RF pulse is necessary
- -Lower beam loading effect
- -Narrow spectrum

-Compression is theoretically possible but not realized!

and Thermionic gun beam dynamics

RF gun with thermionic cathode

Updated layout proposal

LNF expertise on Photoinjector: S and C band

The Photoinjector The SPARC_LAB photoinjector is based on a 1.6 cell S-band <u>RF gun</u> which operates at ~120 MV/m peak on cathode. At the gun exit a solenoid is located for the emittance compensation and downstram two 3 m long Sband accelerating structures plus a 1.5 m Cband, are located providing a total energy of ~200 MeV on crest.

The SPARC_LAB photocathode laser system is based on a <u>Titanium-Sapphire laser</u> at 800 nm, the laser system is <u>synchronized</u> with the RF system with a compressed pulse energy of about 50 mJ. We split the laser pulses from the oscillator to two CPA systems, one used for the photocathode and one for <u>FEL seeding</u> and <u>diagnostics</u>

Conceptual Design Report of the CompactLight X-ray FEL

Table 5.2.: Main parameters of the C-band gun.			
Parameter	Unit	Value	
Working frequency	GHz	5.996	
$E_{\text{cath}}/P_{\text{diss}}^{1/2}$	MV/(mMW ^{1/2})	52	
RF input power	MW	18	
Cathode peak field	MV/m	160	
Cathode type		copper	
Rep. rate	Hz	1000	
Quality factor		11800	
Filling time	ns	164	
Coupling coefficient		3	
RF pulse-length	ns	300	
$E_{\rm surf}/E_{\rm cath}$		0.9	
Modified Poynting vector	$W/\mu m^2$	2.5	
Pulsed heating	°C	<20	
Average diss. Power	W	2300	

C-band structures at LNF

Figure 5.11.: Schematic layout of the C-band booster feeding system

Table 5.5.: Main parameters of the	e C-band structures.
------------------------------------	----------------------

Parameter	Unit	
Working Frequency	GHz	5.996
Phase advance per cell	rad	2π/3
Average iris radius < a >	mm	6.6
Iris radius a	mm	6.94-6.26
Number of cells per structure		120
Accelerating cell length	mm	16.67
Structure length Ls	m	2
Shunt impedance R	$M\Omega/m$	71 - 77
Effective shunt impedance \mathbf{R}_s	$M\Omega/m$	190
Group velocity <i>v_g/c</i>	%	2.4-1.6
Filling time	ns	336
Average acceleration gradient	MV/m	15
Required input power per module	MW	9
Number of structure in the module		4

Table 5.6.: Main Parameters of the C-band Klystr

Parameter	Unit	Value	
Operating frequency	GHz	5.996	
Klystron pulse-length	μs	2	
Klystron peak power	MW	15	
Repetition Rate	Hz	1000	<
Q ₀ of BOC		216000	
Q _E of BOC		19100	

ELI-NP Gamma beam System

Technical Design Report Final version July 14th 2014

Table 16. Main parameters of the C-Band TW accelerating structures			
Structure type	Constant impedance, TV		
Norking frequency (f _{RF})	5.712 [GHz		
Number of cells	10:		
Structure length	1.8 n		
Working mode	TM ₀₁ -like		
Phase advance between cells			
Nominal RF input power (P _{IN})	40 MV		
Average accelerating (E _{acc})	33 MV/n		
Quality factor (Q ₀)	880		
Shunt Impedance per unit length	67-73 MΩ/n		
Phase velocity			
Normalized group velocity	0.025-0.014 (v _g /c		
Filling time (T)	310 n:		
Structure attenuation constant	0.58 nepe		
Operating vacuum pressure (typical)	10 ⁻⁸ -10 ⁻⁹ mba		
Max RF input pulse length (т IMP)	0.8 µ:		
Pulse duration for beam acceleration (T BEAM)	<500 n:		
ris half aperture (a)	6.8-5.8 mn		
Rep. Rate (f _{rep})	100 H:		
Average dissipated power	2.3 kV		

Detail of the TW cell with absorber Fig. 67.

Beam Dynamics w C-band

Evolution of:

- (a) the RMS bunch length and energy gain
- (b) the transverse normalized emittance and transverse spot size along the photo-cathode RF gun and first C-Band section of the injector.

Fig. 21. Twiss parameters of the high energy beamline from the photoinjector exit down to the high energy Compton Interaction point

low (above) and high (bottom)

Elegant and CSRtrack codes for CSR, Wakefields & LSC effects

European network for developing new horizons for RIs

To do List:

- Codes Benchmark (1st milestone)
- Fel Parameters list for 6 GeV Linac + 250 pC beam ($\sigma_z \le 10 \mu m$) discussion already started
- 250 mA beam optimal insertion in Cband linac for top-up operation
- Final 6 GeV linac layout and report (2nd Milestone)
- Workshop preparation & report (3rd milestone

Thanks for your attention