Task 4.6 Development of a generic CDR for automated XAS Beamlines

Melanie Nentwich Darmstadt, 09.02.2023

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

Overview

- > Task 4.6 within CREMLINplus
- > Current Status
- > Future Perspectives

Task 4.6 within CREMLINplus

Task 4.6 within CREMLINplus

- > WP4 Collaboration with USSR
- Task 4.6 Scientific case, beamlines and experimental stations: definition of perspective techniques for a 4th generation source
- > D4.1 Report on the scientific case and the conceptual design of a scattering/diffraction beamline due in January 2021
- D4.7 and M24 Report on the scientific case and the conceptual development of a prototype spectroscopy beamline due in January 2022
- > D4.14 and M48 Report on the scientific case and conceptual development of beamlines and experimental stations due in January 2024

Comparison of nanoprobe beamlines

- > from existing and planned 4th generation synchrotron rings 4GSR
- > comparing main components and distances

					-	
	ID16B, ESRF-EBS	ID01, ESRF-EBS	NanoMAX, MAX IV	ISN-ID19, APS-U	3DMN-34ID, APS-U	CHEX-28ID, APS-U
aperture	30	_	-	27	27	27
mirrors	30	_	25	29	30	26+34
aperture	-	—	—	30	47	-
mono	35	33	28	32	54	35
focusing	_	_	_	35	_	50
SSA	40	100	51	55 + 64		50
aperture	164	_	_	_	_	_
focusing	165	119	84/94	220	65	63

Table 1: Overview of the distances of beam shaping elements at different nanoprobe beamlines of 4GSR.

Table 2: Beamline parameters of existing nanoprobe beamlines of 4CSR. DCM – double crystal monochromator, CCM – channel cut monochromator, KB mirrors – Kirkpatrick-Baez mirrors, FZP – Fresnel zone plates, CRL – compound refractive lenses, NF – nanofocusing, WBM – white beam mirror, H – horizontal, V – vertical

parameter	unit	ID16B, ESRF-EBS [18]	ID01, ESRF- EBS [19, 20]	NanoMAX, MAX IV [21, 22]	ISN-19ID, APS-U [23, 24]	3DMN-34ID, APS-U [23, 24]	CHEX-28ID, B, APS-U [23, 24]	new beamline for USSR
Ring								
electron beam energy	(GeV)	6.037	6.037	3	6	6	6	6
electron beam current	(A)	0.2	0.2	0.25	0.2	0.2	0.2	0.1
dist. to sample	(m)	165	118	94	67	65	220	100
Undulator								
undulator type		in-vacuum	revolver	in-vacuum	revolver	planar	planar	in-vac.
undulator length	(m)	2.5	1.6	1.5	4.6	2.1	1.3	4
period	(mm)	26	27/35	18	21/25	28	19	23
k value	()	N/A	N/A	1.95	$K_y = 1.94$	2.46	2.29 N/A	2.12
minimal gap	(mm)	6.5	11	4.0	N/A	N/A	N/A	6
energy range	(keV)	570	6 24	530	530	530	15 60	5 40
Monochromator								
optical elements		double WBM	-	H & V focusing mirrors	-	flat H mirror	collimators	-
monochromator		V diffracting DCM, Si(111)	CCM & DCM, Si(111)	H diffracting DCM, Si(111)	H deflecting DCM, Si(111)	DCM	H DCM	DCM, Si(111)
offset	(mm)	12.5	N/Á	13.3	N/A	1.1	N/A	10.0
End Station								
secondary focusing		KB mirrors	FZP	KB mirrors or FZP	NF mirrors	KB mirrors	CRL	CRL or mirrors
min. beam size flux	$_{(ph/s)}^{(nm)}$	$\begin{array}{c} 50\\ 1\times 10^{12a} \end{array}$	$\begin{array}{c} 35 \\ 1 \times 10^{9b} \end{array}$	KB: 300, FZP: 40 1×10^{12c}	${5 \times 10^{12c}}$	37 N/A	$\begin{array}{c} 800\\ 4\times10^{13c} \end{array}$	$\begin{array}{c} 50\\ 3\times10^{13d} \end{array}$

^a 17.5 keV, ^b 8 keV, ^c 10 keV, ^d 20 keV

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072.

Choosing an appropriate undulator

- > 5 keV to 40 keV
- > nanoprobe → highest brilliance
- > available straight section: 5 m
- in-vacuum undulator, effective length of 4 m
- > design recommended by M. Tischer, DESY:
 - min. gap: 6 mm
 - magnetic field: 0.987 T
 - period length: 23 mm
 - periods: 174
 - k-value: 2.12

X-Ray Tracing calculations of the undulator

Choosing focusing elements

- Compound Refractive Lenses (CRL), Fresnel Zone Plates (FZP) or Kirkpatrick Baez (KB) mirrors?
- here: CRLs simple handling, "rare" energy changes
- > 2D Be lenses, radius 0.05 mm
- large working distance of 0.6 m for extensive sample environments
- optionally combined with a secondary source CRL (SSA at 77 m)

X-Ray Tracing calculations of the

1 set of CRL, $E = 20 \,\mathrm{keV}$, sample position

1 set of CRL, E = 20 keV, $0.22 \times 0.07 \, \mu \text{m}^2$

1 set of CRL, $E = 60 \text{ keV}, 197 \times 197 \text{ }\mu\text{m}^2$

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072.

1 set of CRL, E = 60 keV, pinhole, $4.8 \times 4.8 \,\mu\text{m}^2$

2 sets of CRL, $E = 20 \text{ keV}, 0.45 \times 0.37 \,\mu\text{m}^2$

Comparison of spectroscopy beamlines

- > from existing and planned 4th generation synchrotron rings 4GSR
- > comparing main components and distances

		Polar 4-ID B [27]	XPCS 8-ID E [27]	Balder ^a [28, 29]	ID24 EDXAS_L [30]	ID26, EH1 [31, 32]
	aperture WBM/HRM monochromator aperture aperture	27.0 2×28.5 30.0 31.1 47.3	$27.1 \\ 28.0 + 30.6 \\ 33.7 \\ - \\ 51.3$	26.5 + 31.5 28.0 31.0	${ m N/A}\ 28.5+31.0\ 55.0^{b}\ N/A\ N/A\ N/A$	29.7 33.4 34.2
focusing	toroid mirrors KB mirrors transfocators	$\begin{array}{r} 48.0 + 50.0 \\ 61.0 \\ 59.3 \end{array}$	55.3 52.0	31.5 	$\begin{array}{r}55.5\\28.5+31.0\\-\end{array}$	$37.2+39.1 \\ -$
	attenuators aperture aperture sample	54.1 53.7 59.4 61.3	N/A 54.8 55.9 56.3	N/A 32.0 - 46.0	N/A N/A N/A 55.6	41.9 42.0 - 43.0

Comparison of spectroscopy beamlines

- > from existing and planned 4th generation synchrotron rings 4GSR
- > comparing main components and distances

		EMA [33, 34]	QUATI [35]	P64 [36, 37]	P65 [38]
	aperture WBM/HRM monochromator aperture aperture	N/A 2 × 33.3 ^c 28.5 N/A N/A	N/A 15.0 + 30.0 24 N/A N/A	$\begin{array}{c} 44.8 + 37.1 \\ 58.7 + 60.1 \\ 56.6 \\ - \end{array}$	49.0 50.0 + 53.0 51.5 –
focusing	toroid mirrors KB mirrors transfocators	44.5 + 96.0	30		
	attenuators aperture aperture sample	45, 97 - - 98	N/A N/A - 45	N/A 87 - 87.2	N/A 59 N/A 60

research and innovation programme under grant agreement No. 871072.

parameter	unit	Polar 4-ID, APS-U [27]	XPCS 8-ID, APS-U [27]	Balder, MAX IV [28, 29]	ID24 EDXAS_L, EBS-ESRF [30]	ID26, EBS-ESRF [31, 32]
Ring						
electron beam energy electron beam current	(GeV) (A)	6 0.2	6 0.2	3 0.25	6.037 0.2	6.037 0.2
Undulator						
undulator type undulator length period k value minimal gap	(m) (mm)	2 in-line SCAPE ^a 2×1.3 35 + 35 N/A N/A	2 in-line revolver 4.6 21/25 1.29/1.90 N/A	in-vacuum, tapered 2.0 50 9 5.5	4 in-line, 'tapered' $\approx 3 \times 1.5$ 27 + 27 + 27/32 + 32 N/A e.e. 11.0/11.7/12.5	3 in-line 3×1.6 35 + 35 + 35 2.45 11.2
energy range	(keV)	2.8 to 27	8 to 25	2.4 to 40	5 to 28	2 to 25
Monochromator						
optical elements		WBM (Si, Pt, Rh)	WBM (Si, Cr, Pt, Rh)	WBM (Si, Ir)	KB-V = WBM (Si, Pt, Rh)	WBM (Si, Pt, Pd)
monochromator		H DCM, Si(111), LN_2 cooled	H DCM, $Si(111)$ and $Si(113)$, LN_2 cooled	DCM, $Si(111)$ and $Si(113)$, LN_2 cooled	polychromator, Si(111), Laue geometry	DCM, $Si(111)$ and $Si(113)$, LN_2 cooled
offset	(mm)	N/A	15	10 to 32	N/A	25
End Station						
no. end stations dist. source to sample	(m)	2 61.3/73.3	2 56.3/67.5	1 46.0	$\frac{2}{55.6/64.7}$	$2 \\ 43.0/54.6$
focusing elements		transfocators, KB mirrors, toroidal mirrors	transfocators, KB mirrors	toroidal mirror	KB mirrors	bendable KB mirrors
beam size flux	(μm^2) (ph/s)	34 × 4 N/A	0.3 imes 0.3 N/A	$100 \times 100 \\ 1 \times 10^{13b}$	$\begin{array}{l} 4\times 4 \\ 4\times 10^{13c} \end{array}$	$\begin{array}{l} 100\times 50\\ 5\times 10^{13d} \end{array}$
diffractometer		double tilt Eulerian cradle	double tilt Eulerian cradle	1 axis	breadboard	breadboard
detectors etc.		2D fluorescence D, polarization A, Raman S	N/A	Raman S, mass S, X-ray emission S, Lytle D, PIPS D, SDD	2D FReLoN CCD, 1D Hamamatsu CCD, XH Ge microstrip	photo diodes, hard X-ray emission S tender X-ray emission S, SDD

parameter	unit	EMA, Sirius [33, 34]	QUATI, Sirius [35]	P64, PETRA III [36, 37]	P65, PETRA III [38]	new beamline for USSR
Ring						
electron beam energy	(GeV)	3	3	6	6	6
electron beam current	(A)	0.1	0.1	0.1	0.1	0.2
Undulator						
undulator type		in-vacuum	dipole source	??	mini-undulator	revolver
undulator length	(m)	1.2	N/A	2	0.39	4
period	(mm)	20	N/A	32.8	32.8	27
k value		N/A	N/A	2.7	2.6	2.12
minimal gap	(mm)	22	N/A	9.5	10	6
energy range	(keV)	2.7 to 30	4.5 to 35	4 to 44	4 to 44	4 to 39
Monochromator						
optical elements		HRM (Si, Pt, Rh)	WBM (Si, Pt, Rh)	WBM (Si, Pt, Rh)	WBM (Si, Pt, Rh)	-
monochromator		DCM, Si(111) and Si(220), V bounce, fixed exit	DCM, $Si(111)$ and $Si(311)$, LN_2 cooled	CCM and DCM, Si(111), Si(311), LN ₂ cooled	DCM, $Si(111)$ and $Si(311)$, H_2O cooled	
offset	(mm)	0	N/A	21	N/A	0
End Station						
no. end stations		2	2	1	1	
dist. source to sample	(m)	45.5/98	45.5	87.2	N/A	70?
focusing elements		KB mirrors	toroidal mirror (Pt, Rh)	mirrors (Si, Rh)	-	
beam size	(μm^2)	1×0.4	10×5	150×50	500×1000	0
flux	(ph/s)	1×10^{12e}	1×10^{10e}	1×10^{13} f	2×10^{12f}	5×10^{13g}
diffractometer		6+2 circles	breadboard	breadboard	breadboard	??
detectors etc.		2D, Raman-S, photodiodes, ion chamber, fluo D	Raman-S	fluorescence D, transmission D, ion chamber, dispersive von-Hamos S	ion chamber, HPGe D, Si-PIPS ^h diodes, fluo D	
$e - 20 \text{keV}, \qquad f - 9$	keV,	g – experimental value	es, h – Passivated	Implanted Planar Silicon		

Choosing an appropriate undulator

- > 5 keV to 40 keV
- > highest brilliance → penetrate sample environments AND minimize exposure time (increase time resolution)
- using well established ESRF design (55 models listed)
- complementing revolver, in-air undulators, effective length of 2.5 m
 - analyzing groups of undulators with period below and above 32 mm
 - U23 (ID 22_01)
 - U35 (ID 03_02)

X-Ray Tracing calculations

Choosing optical elements

- > avoid energy dependent monochromator offset: 2 sets of channel-cut monochromators additional benefit: sharpening of beam profile while almost no additional loss of intensity
- > focusing with KB mirrors (non-dispersive)
 - Si with Rh and Pt coating
 - determining KB size (minimizing cutting-off the beam): $500 \times 30 \text{ mm}$ and $400 \times 30 \text{ mm}$

X-Ray Tracing calculations

Current Status

Changes towards EURIZON

- > WP4 Synchrotrons
- Task 4.6 Development of a generic Conceptual Design Report for automated X-Ray Absorption Spectroscopy Beamlines
- > D4.22 Report on the 1st International Workshop due in January 2023
- M59 Input collection finalized due in June 2023
- > D4.23 Completion of the generic CDR for a fully automated XAS beamline due in December 2023
- > D4.24 Report on the 2nd International Workshop due in January 2024

Current progress within EURIZON

> Oct. 2022:

- starting to organize the workshop
- cooperation with managers of XAS beamlines at DESY
- dedicated session within the XAS satellite workshop at the DESY Users' Meeting (23 – 27 January 2023)
- Nov. 2022: gaining overview of relevant aspects (automation, XAS, in-situ, ...)
- > Dec. 2022: choosing topics and inviting speakers
- Jan. 2023: performing workshop including 6 speakers and more than 70 participants online and in-person

SATELLITE WORKSHOP - Photon Science

X-Ray Absorption Spectroscopy today and perspectives for future PETRA III and IV beamlines Thursday, 26. January 2023, Bldg.3 BAH+#1

Organizers: W. Caliebe, E. Welter, M. Nentwich (DESY)

PROGRAMME				
	Beamline Automation			
14:45	Automatization of synchrotron experiments - present and future	Alexander Schökel		
15:05	SECOP - the Sample Environment Communication Protocol	Klaus Kiefer (Via Zoom)		
15:25	TBD	Peter Weidler		
15:45	XAS reference database under DAPHNE4NFDI	Sebastian Paripsa		
16:05	Relevanz von Automatisierung in der Industrie	Bernd Hinrichsen		
16:25	TBD	Janis Timoshenko		
16:45	Discussion			
17:00	End of Meeting			

Future Perspectives

Future Perspectives

- > evaluation of 1st workshop
- > identifying critical topics and issues
- > detailed investigations (M59, due in June 2023)
- > performing xrt calculations to beamline details (yet to be defined)
- > writing CDR (D4.23, due in December 2023)
- > preparing the 2nd workshop (presenting CDR)
- report on 2nd workshop (D4.24, due in January 2024)

Conclusion

- > CDR for nanobeam diffraction/scattering beamline
 - comprehensive comparison of existing/ planned beamlines at 4GSR
 - including xrt model of the beamline for adaption
- > CDR for prototype spectroscopy beamline
 - comprehensive comparison of existing/ planned beamlines at 4GSR
 - detailed calculations on the design of the KB mirrors
 - including xrt model of the beamline for adaption
- > 1st workshop was held successfully

Thanks to

EURIZON for financial support

DESY Oliver Seeck Dmitri V. Novikov

ESRF Michael Krisch

You for your attention

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072.