

Fluorinated nano-diamond reflectors, Recent results:

1. Directional extraction and sources of Very Cold Neutrons (VCN),

2. Optimized quasi-specular reflection of cold neutrons (CN).

References to the respective publications (partly or totally done in the framework of the present project) are given below in the text

07.02.23

INSTITUT MAX VON LAUE - PAUL LANGEVIN

The most recent publications:

- S.M. Chernyavsky, M. Dubois, E. Korobkina, E.V. Lychagin, A.Yu. Muzychka, G.V. Nekhaev, V.V. Nesvizhevsky, A.Yu. Nezvanov, A.V. Strelkov, K.N. Zhernenkov, Enhanced directional extraction of very cold neutrons using a diamond nanoparticle powder reflector, Rev. Sci. Instr. 93 (2022) 123302 (editor's highlight) - V.V. Nesvizhevsky, Why very cold neutrons could be useful for neutron antineutron oscillation searches, J. Neutron Res. 24 (2022) 223 (proceedings of ESS/VCN/UCN workshop) - A. Bosak, M. Dubois, E. Korobkina, E. Lychagin, A. Muzychka, G. Nekhaev, V. Nesvizhevsky, A. Nezvanov, T. Saerbeck, R. Schweins, A. Strelkov, K. Turlybekuly, K. Zhernenkov, Effect of nanodiamond sizes on the efficiency of the quasi-specular reflection of cold neutrons, Materials 16 (2023) 703 (invited article)

08.02.23

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Plan of this presentation

- Diffusive reflectivity of Very Cold Neutrons (VCNs) from Fluorinated Detonation NanoDiamond (F-DND) powders,
- Experimental demonstration of the directional extraction of VCNs from the cavity in a F-DND reflector,
- A possible implementation of the VCN source at the European Spallation Source (ESS), Lund, Sweden,
- Effect of particle sizes on the efficiency of quasispecular reflection of cold neutrons.

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Image: NPP provide state Image:

Fluorination, deagglomeration, removal of metals, size selection

Figure 8. Neutron albedo (black lines) and transmission (red lines) for a flat layer of DF-DNDs (dashed lines) and S-DNDs (solid lines) versus neutron velocity [m/s]. (a) The layer thickness is 3 cm and the powder density is 0.56 g/cm³ for both samples; (b) the layer thickness is 3 cm and the powder density is 0.56 g/cm³ for DF-DNDs, and it is 0.67 g/cm³ for S-DNDs.

Directional extraction of VCNs

1 - DND cylindrical reflector, 2 - DND disk reflector, 3 - VCN velocity selector, 4 position-sensitive detector (PSD), 4' -**PSD** position when measuring neutron fluxes in the incident beam, 4" - PSD position when measuring the angular distribution of outgoing VCNs, 5 -Cd diaphragm, 6 vacuum volume

08.02.23

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Directional extraction of VCNs

Dependence of VCN flux density recorded by a PSD located at a distance of ~42cm from the cavity exit, on the distance to the axis of the cylindrical cavity (left axis). Round dots correspond to the neutron velocity of ~57 m/s, square dots to ~75 m/s. The right axis is the gain factor g in the flux density with respect to the flux density from a homogeneous isotropic source located at the bottom of the cavity. The inset shows a map of the PSD's count intensity by pixels in measurements for the VCN velocity of ~75 m/s

08.02.23

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Directional extraction of VCNs

Left axis: a percentage of the VCN flux exiting through the diaphragm compared to the VCN flux incoming to the cavity, as a function of VCN velocity. Right axis: gain factor G in the outgoing flux relative to the flux that would pass through the diaphragm from a homogeneous isotropic source with the intensity of the incident beam located at the bottom of the cavity

08.02.23

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Results of the analysis of this experiment:

- The first experimental demonstration of the enhanced directional extraction of VCNs using a reflector made of nanodiamond powder (F-DND),
- With respect to the flux from an isotropic source located at the bottom of the reflector cavity, the gain in the VCN flux density along the beam axis is ~10 for 57 m/s and 75 m/s,
- The gain in the total flux at the exit from the reflectivity cavity is ~14 for the fastest VCNs from the velocity range of 46-92 m/s and increases with decreasing VCN velocity reaching ~33 for the slowest VCNs,
- The use of such a reflector in VCN sources will significantly increase the VCN flux in experimental setups and will expand the use of VCNs.

07.02.23

INSTITUT MAX VON LAUE - PAUL LANGEVIN

A VCNs source for ESS

Workshop on Very Cold and Ultra Cold Neutron Sources for ESS 2-4 February 2022

07.02.23

INSTITUT MAX VON LAUE - PAUL LANGEVIN

A VCNs source for ESS

The current design is kindly provided by Luca Zanini A concrete proposal **[J. Neutr. Res. 24 (2022) 223]** based on F-DND reflectors:

Figure 1. On the left, a current design of the implementation of a large-volume liquid-deuterium source of CNs (the temperature of 20 K, green color). The arrow on bottom illustrates CNs passing through a Be filter (brown color) and feeding a $n - \bar{n}$ experiment. A dedicated solid-deuterium VCN converter with a F-DND reflector could be added to this design as shown below.

INSTITUT MAX VON LAUE - PAUL LANGEVIN

V.V. Nesvizhevsky

08.02.23

- An optimum position (close to the maximum flux of CN), - An optimum incident neutron velocity (for VCN production), - A very large cross-section - thus a very large total VCN flux, delivers VCNs to many beam positions, - The thickness (say, 1-5 cm) is a compromise between the heat load to solid deuterium and the VCN extraction depth, - No problems with neutron scattering on the density inhomogeneity (an important problem for UCNs but virtually absent for VCNs), - Profits from the pulsed structure of the ESS neutron source, - Could be also used to produce UCNs [J. Neutr. Res. 24 (2022) 193]

07.02.23

INSTITUT MAX VON LAUE - PAUL LANGEVIN

[A. Bosak, M. Dubois, E. Korobkina, E. Lychagin, A. Muzychka, G. Nekhaev, V. Nesvizhevsky, A. Nezvanov, T. Saerbeck, R. Schweins, A. Strelkov, K. Turlybekuly, K. Zhernenkov, Effect of nanodiamond sizes on the efficiency of the quasi-specular reflection of cold neutrons, Materials 16 (2023) 703]

$\Delta \theta_1 \sim \lambda_{CN} / 2\pi d_{ND}$

Therefore, we expected a narrower angular distribution of the reflected neutrons and a higher reflection probability

INSTITUT MAX VON LAUE - PAUL LANGEVIN

produced with the shock compression method; F-SCD - fluorinated SCD ND mean size is 15 nm

SCD - nanodiamonds

Figure 8. Neutron scattering probability as a function of neutron wavelength (horizontal axis) within the D17 detector acceptance. (a) DND and SCD samples; (b) F-DND and F-SCD samples; (c) SCD and F-SCD samples. Incident angles 1°, 2° and 3°.

08.02.23

INSTITUT MAX VON LAUE - PAUL LANGEVIN

A much narrower angular distribution for **F-SCD** than that for F-DND. This effect is due to ND sizes.

An optimum size of ND for quasispecular reflection depends on the reflector geometry and neutron spectrum but is around **10 nm**.

Figure 9. Differential probability of neutron scattering (vertical axis) as a function of the reflection angle (horizontal axis) within the angular acceptance of the D17 detector. Samples and wavelength ranges: (a) DND, 2–6 Å; (b) SCD, 2–6 Å; (c) DND, 6–10 Å; (d) SCD, 6–10 Å; (e) F-DND, 2–6 Å; (f) F-SCD, 2–6 Å; (g) F-DND, 6–10 Å; (h) F-SCD, 6–10 Å. For all cases, the angle of incidence was 1°.

08.02.23

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Outlook

- We are interested to simulate such a VCN source at ESS, together with Luca Zanini, Nicola Rizzi and colleagues,
- We are interested to simulate the performance of a **neutronantineutron oscillations experiment at ESS** using VCNs, together with Luca Zanini, Nicola Rizzi, David Milstead, Valentina Santoro and colleagues,
- We are close to propose an optimum design for the quasispecular reflector of cold neutrons at ESS,
- A few more publications are expected