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convolutional neural networks are translation invariant / equivariant

invariant image classification equivariant image segmentation

research goals:  generalize equivariant convolutions to... ...larger symmetry groups  (of Euclidean spaces)

...more general manifolds



Outline

Translation equivariant CNNs (Euclidean spaces)

Coordinate independent CNNs (Riemannian manifolds)

MLPs for image processing?

Affine equivariant CNNs (Euclidean spaces)



MLPs for image processing ?



Multilayer Perceptrons  (MLPs)

universal function approximators
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composed of affine maps + nonlinearities:
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Multilayer Perceptrons  (MLPs)

using MLPs for image processing
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Multilayer Perceptrons  (MLPs)

using MLPs for image processing
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p( 9 |     )MLPs don’t generalize over geometric transformations

MLPs are ignorant of the geometric arrangement of pixels
(any permutation of pixels would be equivalent)



convolutional networks   ==   MLPs + geometric inductive biases

  usually:

our approach:

weight sharing

weight sharing

equivariance   (sufficiency)

equivariance   (necessity)



Translation equivariant CNNs
on Euclidean spaces



Equivariant Neural Networks

(feed forward) neural networks are sequences of layers:

equivariant NNs are sequences of equivariant layers:

to design an equivariant network, we need to ...

... specify the  feature spaces  and  group actions  on them

... design  equivariant layers,  which commute with the group actions

feature maps with translation action

convolutions, bias summation,
nonlinearities, etc.



Feature maps

discretized feature maps on        are implemented as “tensors” of shape

spatial / pixel dimensions feature channels

continuous feature maps are functions                             that assign feature vectors                      to points 

  = feature vector space

feature maps form the  regular                -representation

linear

feature maps carry a translation group action



Translation equivariant NNs

... map between         and         -dimensional input and output feature maps

... commute with the group action:

translation equivariant networks consist of layers                                                                     that ...



Linear equivariant maps          convolutions

ansatz for linear map:

parameterized by 2-point correlator

generic integral transform

on pixel grids:   tensors of shape 



Translation equivariant bias summation

consider a general bias summation operation

allows to sum a different bias                       at each parameterized by a bias field

similar spatial invariance results hold for other operations like  nonlinearities,  pooling,  ...



Translation equivariant CNNs  -  Summary

we defined feature vector spaces as spaces of feature maps

we defined a (linear) translation group action on feature maps
(regular) translation group representation

we derived CNN operations like convolutions / bias summation / etc by:

1)  asuming a flexible ansatz      (linear map, bias field summation)

2)  demanding translation equivariance                  resulting in spatial invariance / relativity / weight sharing

next we do the same with more general symmetries of Euclidean space



Steerable CNNs on Euclidean spaces



Affine group equivariant CNNs

affine groups:

action on         : 

Image from ISBI 2012 EM segmentation challenge

translations

stabilizer / local symmetries   (rotations / reflections / scaling / shearing / ...)



Affine group equivariant CNNs

affine groups:

action on         : 

Image from ISBI 2012 EM segmentation challenge

translations

stabilizer / local symmetries   (rotations / reflections / scaling / shearing / ...)

action on feature spaces ? 



Feature vector fields

feature vector fields on Euclidean spaces ...

... are functions                             that assign feature vectors                       to points                         (like feature maps)

... carry an               -action      (the details depend on their field type      )               
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Feature vector fields

feature vector fields on Euclidean spaces ...

... are functions                             that assign feature vectors                       to points                         (like feature maps)

... carry an               -action      (the details depend on their field type      )               

examples: scalar fields                             transform like:

tangent vector fields                             transform like:

acts here by... 1) moving feature vectors on 

2)     -transforming feature vectors in

-feature fields                             transform like:

where                                is a      -representation acting on individual feature vectors in

   -feature fields form an              -representation, denoted as induced representation



Feature vector fields  -  examples

optical flow
(vector)

diffusion tensor image
(symmetric pos. def. (1,1)-tensor)

fluid flow
(vector)

(subspace of)



Feature vector fields – direct sum

steerable CNNs operate on ”stacks”                  of multiple independent feature fields

conventional CNNs operate on a “stack” of multiple independent feature map channels

#channels as hyperparameter

field types         and multiplicities as hyperparameters



Feature vector fields  -  examples
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Feature vector fields  -  examples



Steerable CNNs

Steerable CNN layers map between feature fields of types        and



Steerable CNNs

Steerable CNN layers map between feature fields of types        and

approach: - start with flexible ansatz for layers

- demand               -equivariance, resulting in...
1)  spatial weight sharing
2)  G-steerability



Linear equivariant maps             -steerable convolutions

ansatz for linear map:

parameterized by 2-point correlator

generic integral transform

demanding Aff(G)-equivariance:
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Linear equivariant maps             -steerable convolutions

ansatz for linear map:

parameterized by 2-point correlator

generic integral transform

demanding Aff(G)-equivariance:

takeaway:

    linearity + translation equivariance     convolution

    linearity + Aff(G) equivariance     convolution with     -steerable kernel



    -steerable kernels

convolution kernels summarize their field of view around                 into a feature vector 

    -steerable kernels guarantee:        -trafo of their input field of view                -trafo of the output feature vector



    -steerable kernels – reflection group example

example:  reflection steerable kernels



    -steerable kernels – reflection group example

example:  reflection steerable kernels

field type

trivial / scalar

sign-flip / 
pseudo-scalar 

regular

original field transformed field



    -steerable kernels – reflection group example

example:  reflection steerable kernels

general steerability constraint:

specific reflection steerably constraint:

spatially
reflected

kernel

channel-
transformed

kernel



    -steerable kernels – reflection group examples

  representation                group elements

trivial / scalar

sign-flip / 
pseudo-scalar 

regular

  identity   reflection

full derivation of these examples  @  Weiler et al. 2021, Coordinate Independent Convolutional Networks, Section 5.3.3

example:  reflection steerable kernels



    -steerable kernels – expansion in linear basis

- the set                                              of unconstrained convolution kernels forms a vector space

to solve the     -steerability kernel constraint in general, observe that:

- the constraint                                                                                                                   is linear

    -steerable kernels form a linear (vector) subspace !

to parameterize steerable convolutions:

1)  solve for a basis                                of      -steerable kernels (precomputation step)

2)  expand kernel in this basis with trainable weights: (during forward pass)



    -steerable kernels – Wigner-Eckart theorem

Leon Lang Gabriele Cesa

the solution decomposes steerable kernels into:

      - harmonics on G-orbits  (Peter-Weyl)

      - Clebsch-Gordan coefficients

      - irrep endomorphisms  (reduced matrix elements)

analytical solution for compact       (including in particular any                     ) 

based on an analogy:        -steerable kernels          tensor operators in QM



    -steerable kernels – Wigner-Eckart theorem

Leon Lang Gabriele Cesa

analytical solution for compact       (including in particular any                     ) 

based on an analogy:        -steerable kernels          tensor operators in QM

we get transition rules between irrep-fields    (as in quantum mechanics)

the solution decomposes steerable kernels into:

      - harmonics on G-orbits  (Peter-Weyl)

      - Clebsch-Gordan coefficients

      - irrep endomorphisms  (reduced matrix elements)



Linear equivariant maps             -steerable convolutions

linear maps revisited:

our integral transform ansatz                                                               does not cover all possible linear maps

a stronger version of the theorem proves:

continuous,              -equivariant linear maps           convolutions with G-steerable Schwartz distributions

Erik Jenner

the distributional setting covers in particular equivariant partial differential operators



            -equivariant bias summation

flexible ansatz:

consider a general bias summation operation

allows to sum a different bias                       at each parameterized by a bias field

demanding equivariance, we get:

similar results for  nonlinearities,  pooling operations,  etc.



e2cnn / escnn library

PyTorch extension for              -steerable CNNs      (for compact G)

fix symmetry group              + action on 

fix types + multiplicities of feature fields 

construct  Aff(G)-equivariant convolution

convolution in native PyTorch:

convolution in e2cnn / escnn:

github: https://github.com/QUVA-Lab/e2cnn
https://github.com/QUVA-Lab/escnn

https://github.com/QUVA-Lab/e2cnn


Equivariance demonstration

SE(2)-steerable CNN:

conventional CNN:




Emperical results – natural images



Emperical results - benchmarking

extensive benchmark of: 
- groups 
- G-representations / field types
- G-equivariant nonlinearities
- invariant maps

covering a wide range of related work and new models



Emperical results – reinforcement learning

equivariant
(simulation pre-trained)

equivariant 
(on-robot)

non-equivariant 
(on-robot)



Local gauge equivariance

steerable CNNs are not only    globally Aff(G)-equivariant,   but locally G-equivariant    (gauge equivariant)

formalized as  coordinate independent CNN



active transformations  -  acting on the data itself:

passive transformations  -  acting on coordinatization of data:

vs.

vs.

Active & passive transformations

local gauge trafos

global transformations



Coordinate independent CNNs
on Riemannian manifolds

“Universal laws of nature are to be expressed by

equations which hold good for all systems of coordinates.”

Principle of Covariance   (Einstein, 1916)

AI



Convolutions on Riemannian manifolds

mesh segmentation shape correspondence deformations (metric field) spherical CNNs

artery wall stress estimation general relativity Euclidean CNNs

intrinsic convolutions,  not in embedding space !



Design questions

how to ...

Image adapted from Konakovic-Lukovic et al.

... define feature fields on       ?

... define convolution kernels on       ?

... share weights over       ?

... guarantee isometry equivariance ?



weight sharing by demanding equivariance w.r.t. global symmetries  (isometries)

can only share over symmetry orbits  (in general non-transitive)

SO(2) orbits trivial orbits

Weight sharing  -  via global symmetries

homogeneous spaces,  
transitive orbits



sharing weights by “shifting” kernel over manifold  ?

parallel transport in general path dependent

Weight sharing  -  via parallel transport



solution approaches in the literature:

the kernel alignment (“gauge”) on manifolds is inherently ambiguous!

Weight sharing  -  approaches in the literature

topological obstructions to
the existence of G-structures

1)  gauge invariant features        low expressiveness 2)  heuristic gauges instable under deformations

3) spectral approaches      gauge independent but 
     instable under deformations

4) gauge equivariant features    (ours, covers 1,2 as special cases)



identify kernel alignment with a choice of reference frame

tangent space
(vector space)

reference frame
(basis)

Reference frames and kernel alignments



identify kernel alignment with a choice of reference frame

frame field   kernel field   

standard (canonical)
frame / kernel field / CNN 

on      

alternative
frame / kernel field / CNN 

on        

Reference frames and kernel alignments



Reference frames and kernel alignments

ambiguity of kernel alignments   ==   ambiguity of reference frames

“G-structure”

identify kernel alignment with a choice of reference frame

frame field   kernel field   



G-structures

frame bundle FM   =   “set” (bundle) of all frames  (GL(d)-valued transition functions)

G-structures GM    =    sub-bundles of frames with                           valued transition functions



G-structures

G-structures GM    =    sub-bundles of frames with                           valued transition functions

G-structures encode additional geometric structure on M in a unified way:
Klein bottle

non-orientable

topological obstructions may prevent the existence of (continuous) G-structures

frame bundle FM   =   “set” (bundle) of all frames  (GL(d)-valued transition functions)



G-structures



GM-coordinate independence  -  tangent vectors

all frames of the G-structure are equally valid

     any  object  or  morphism  should be expressible relative to any frame in GM



                      -  in gauge A,      is expressed by coefficients  

                      -  in gauge B,      is expressed by coefficients  

                      -  gauge trafos                       relate coefficients:  

different coefficients,
same information content!

GM-coordinate independence  -  tangent vectors

all frames of the G-structure are equally valid

     any  object  or  morphism  should be expressible relative to any frame in GM

example:      -  tangent vectors                       are coordinate free



coordinate independent  feature vectors  transform according to  G-representation      : 

 

GM-coordinate independence  -  feature vector fields

scalar field trivial representation        

tangent vector field standard representation   

tensor field tensor representation       

irrep field irreducible representation

regular feature field regular representation

 
formally, feature vectors are elements of a  G-associated feature vector bundle

all frames of the G-structure are equally valid

     any  object  or  morphism  should be expressible relative to any frame in  GM



example:      -  linear maps                                          are coordinate free

                      -  in gauge A,          is expressed by coefficients  

                      -  in gauge B,          is expressed by coefficients  

GM-coordinate independence  -  linear maps on TpM

                      -  gauge trafos                       relate coefficients:  

all frames of the G-structure are equally valid

     any  object  or  morphism  should be expressible relative to any frame in GM



GM-coordinate independence  -  kernels

coordinate independence of kernels:

gauge trafo:G-steerability constraint



gauge trafo:

GM-coordinate independence  -  kernels

coordinate independence of kernels:

weight sharing of kernels:

equivariance constraint

coordinate independent iff:
for any gauge

depends in general on chosen gauge!



GM-convolutions

-steerable kernel convolutional kernel field-structure

-coordinate independent convolutions  operate by applying a  convolutional kernel field  to a feature field

symmetry properties: 1)    GM-coordinate independence           (passive)

2)    local gauge equivariance (active)

3)    global isometry equivariance (active)
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GM-convolutions

-coordinate independent convolutions  operate by applying a  convolutional kernel field  to a feature field

symmetry properties: 1)    GM-coordinate independence           (passive)

2)    local gauge equivariance (active)

3)    global isometry equivariance (active)



Isometry equivariance

“kernel field transform”: similar to convolution,  but not assuming weight sharing

parameterized by a  kernel field

SO(2)-invariant
kernel field

O(2)-invariant
kernel field

     -equivariant kernel 
field transform

    -invariant 
kernel field

Theorem:    let        , then:



Isometry equivariance  -  GM-convolutions

- horizontal translations

- horizontal translations
- vertical translations
- horizontal reflections

Let   be the subgroup of isometries that are symmetries of GM

GM-convolutions are                    -equivariant

G-steerable (convolutional) kernel fields inherit this                      -invariance



Isometry equivariance  -  GM-convolutions





Minkowski space  +  global Poincaré symmetry Euclidean space  +  global Aff(G) symmetry

curved spacetime  +  local Lorentz transformations Riemannian manifold  +  local gauge transformations

tensor fields feature fields

invariant laws of nature (relativity) invariant neural connectivity

equivariant system dynamics equivariant inference

feature transition rules

G-steerable kernelsscalar / vector / tensor operators in QM

quantum state transition rules

physics deep learning

mathematical structure
(group/representation theory  &  differential geometry)



Thank you

Maurice Weiler
AMLab,  QUVA Lab
University of Amsterdam

@maurice_weiler
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