Equivariant & Coordinate Independent Convolutional Neural Networks

Maurice Weiler AMLab, QUVA Lab University of Amsterdam

😏 @maurice_weiler

convolutional neural networks are translation invariant / equivariant

invariant image classification

equivariant image segmentation

research goals: generalize equivariant convolutions to... ...larger symmetry groups (of Euclidean spaces) ...more general manifolds

Outline

MLPs for image processing?

Translation equivariant CNNs

Affine equivariant CNNs

Coordinate independent CNNs

(Euclidean spaces)

(Euclidean spaces)

(Riemannian manifolds)

MLPs for image processing?

Multilayer Perceptrons (MLPs)

universal function approximators $\ \ f:\ \mathbb{R}^N o \mathbb{R}^M$

composed of affine maps + nonlinearities: $x_{i+1} = \sigma(Wx_i + b)$

Multilayer Perceptrons (MLPs)

 \mathbb{R}^{10} using MLPs for image processing p(0|**3**) 3) p(\mathbb{R}^{28^2} 28px 3) p(2 p(3|**3**) 3) p**(**4 . . . p(5|**3**) p(6|3) 3) p(p**(** 8 3) p(9|**3**) MLPs don't generalize over geometric transformations

28px

Multilayer Perceptrons (MLPs)

 \mathbb{R}^{10} using MLPs for image processing p(0|**3**) p(\mathbb{R}^{28^2} 28px p(2 3) p(3|**3**) 3) p(4 p**(** 5 3) p(6|**3**) p(p**(**8 3) p(9|**3**) MLPs don't generalize over geometric transformations

28px

MLPs are ignorant of the geometric arrangement of pixels (any permutation of pixels would be equivalent)

convolutional networks == MLPs + geometric inductive biases

Translation equivariant CNNs on Euclidean spaces

Equivariant Neural Networks

(feed forward) neural networks are sequences of layers:

$$\mathcal{F}_{0} \xrightarrow{L_{1}} \mathcal{F}_{1} \xrightarrow{L_{2}} \mathcal{F}_{2} \xrightarrow{L_{3}} \dots \xrightarrow{L_{N-1}} \mathcal{F}_{N-1} \xrightarrow{L_{N}} \mathcal{F}_{N}$$

equivariant NNs are sequences of equivariant layers:

to design an equivariant network, we need to ...

... specify the *feature spaces* and *group actions* on them \rightarrow feature maps with translation action

... design *equivariant layers*, which commute with the group actions \rightarrow convolutions, bias summation, nonlinearities, etc.

continuous feature maps are functions $f : \mathbb{R}^d \to \mathbb{R}^c$ that assign feature vectors $f(x) \in \mathbb{R}^c$ to points $x \in \mathbb{R}^d$

feature maps carry a translation **group action** $[t \triangleright f](x) := f(x - t)$

feature maps form the *regular* $(\mathbb{R}^d, +)$ -representation

translation equivariant networks consist of layers $\mathcal{L}: L^2(\mathbb{R}^d, \mathbb{R}^{c_{\text{in}}}) \to L^2(\mathbb{R}^d, \mathbb{R}^{c_{\text{out}}})$ that ...

... map between $c_{
m in}$ and $c_{
m out}$ -dimensional input and output feature maps

... commute with the group action:

Linear equivariant maps \Leftrightarrow convolutions

ansatz for linear map:

generic integral transform
$$I_{\kappa}[f](x) := \int_{\mathbb{R}^d} dy \ \kappa(x,y) f(y)$$

parameterized by 2-point correlator $\kappa: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^{c_{\mathrm{out}} \times c_{\mathrm{in}}}$

Theorem (linearity + translation equivariance \Rightarrow convolution)

The integral transform I_{κ} is translation equivariant iff the 2-point correlator is *invariant*:

$$\kappa(x+t, y+t) = \kappa(x, y) \qquad \forall x, y, t \in \mathbb{R}^d$$

It depends only on the *relative* distance x - y, that is,

$$\kappa(x, y) = K(x - y)$$
 for some $K : \mathbb{R}^d \to \mathbb{R}^{c_{\text{out}} \times c_{\text{in}}}$.

The integral transform is therefore given by a *convolution integral*:

$$\mathbf{I}_{\kappa}[f](x) = [K * f](x) = \int_{\mathbb{R}^d} dy \ K(x - y) f(y)$$

on pixel grids: tensors of shape

$$\underbrace{(X_1, \dots, X_d, \underbrace{C_{\text{out}}, C_{\text{in}}}_{\mathbb{R}^d} \longrightarrow \underbrace{\mathbb{R}^{c_{\text{out}} \times c_{\text{in}}}}_{\mathbb{R}^{c_{\text{out}} \times c_{\text{in}}}}$$

consider a general bias summation operation $\ f \ \mapsto \ f + \mathfrak{b}$

parameterized by a **bias field** $\mathfrak{b}: \mathbb{R}^d \to \mathbb{R}^c \implies allows to sum a$ *different bias* $<math>\mathfrak{b}(x) \in \mathbb{R}^c$ at each $x \in \mathbb{R}^d$

Theorem (translation equivariant bias summation)

Bias summation is translation equivariant iff the bias field is *invariant*:

 $\mathfrak{b}(x) = b$ for some $b \in \mathbb{R}^c$ and any $x \in \mathbb{R}^d$

similar spatial invariance results hold for other operations like nonlinearities, pooling, ...

we defined **feature vector spaces** as spaces of feature maps we defined a (linear) **translation group action** on feature maps

(regular) translation group representation

we derived **CNN operations** like convolutions / bias summation / etc by:

1) asuming a flexible **ansatz** (linear map, bias field summation)

2) demanding translation equivariance \rightarrow resulting in spatial invariance / relativity / weight sharing

next we do the same with more general symmetries of Euclidean space

Steerable CNNs on Euclidean spaces

action on \mathbb{R}^d : (tg)x := gx + t

$\begin{tabular}{|c|c|c|c|} \hline & translations & translations & stabilizer / local symmetries (rotations / reflections / scaling / shearing / ...) & affine groups: Aff(G) := (\mathbb{R}^d, +) \rtimes G & G \leq \operatorname{GL}(d) & f(G) = (\mathbb{R}^d, +) \otimes G & f(G) = (\mathbb{R}^d,$

action on \mathbb{R}^d : (tg)x := gx + t

action on feature spaces ?

feature vector fields on Euclidean spaces ...

... are functions $f : \mathbb{R}^d \to \mathbb{R}^c$ that assign feature vectors $f(x) \in \mathbb{R}^c$ to points $x \in \mathbb{R}^d$ (like feature maps)

... carry an $\operatorname{Aff}(G)$ -action (the details depend on their *field type* ho)

feature vector fields on Euclidean spaces ...

... are functions $f : \mathbb{R}^d \to \mathbb{R}^c$ that assign feature vectors $f(x) \in \mathbb{R}^c$ to points $x \in \mathbb{R}^d$ (like feature maps) ... carry an $\operatorname{Aff}(G)$ -action (the details depend on their *field type* ρ)

examples: scalar fields
$$s : \mathbb{R}^d \to \mathbb{R}^1$$
 transform like: $[(tg) \triangleright s](x) = 1 \cdot s((tg)^{-1}x)$
tangent vector fields $v : \mathbb{R}^d \to \mathbb{R}^d$ transform like: $[(tg) \triangleright v](x) = g \cdot v((tg)^{-1}x)$
Aff(*G*) acts here by... 1) moving feature vectors on \mathbb{R}^d
2) *G*-transforming feature vectors in \mathbb{R}^c

feature vector fields on Euclidean spaces ...

... are functions $f : \mathbb{R}^d \to \mathbb{R}^c$ that assign feature vectors $f(x) \in \mathbb{R}^c$ to points $x \in \mathbb{R}^d$ (like feature maps) ... carry an Aff(*G*)-action (the details depend on their *field type* ρ)

examples: scalar fields
$$s : \mathbb{R}^d \to \mathbb{R}^1$$
 transform like: $[(tg) \triangleright s](x) = 1 \cdot s((tg)^{-1}x)$
tangent vector fields $v : \mathbb{R}^d \to \mathbb{R}^d$ transform like: $[(tg) \triangleright v](x) = g \cdot v((tg)^{-1}x)$
Aff(*G*) acts here by... 1) moving feature vectors on \mathbb{R}^d
2) *G*-transforming feature vectors in \mathbb{R}^c

 ρ -feature fields $f : \mathbb{R}^d \to \mathbb{R}^c$ transform like: $[(tg) \rhd f](x) = \rho(g) f((tg)^{-1}x)$

where $\rho: G \to \operatorname{GL}(c)$ is a *G*-representation acting on individual feature vectors in \mathbb{R}^c

ho-feature fields form an $\operatorname{Aff}(G)$ -representation, denoted as **induced representation** $\operatorname{Ind}_{G}^{\operatorname{Aff}(G)}
ho$

fluid flow (vector)

 $\rho(g)=g$

optical flow (vector) ho(g) = g

diffusion tensor image (symmetric pos. def. (1,1)-tensor) (subspace of) $ho(g) = g \otimes g^{- op}$

conventional CNNs operate on a "stack" of multiple independent feature map channels

 \Rightarrow #channels as hyperparameter

steerable CNNs operate on "stacks" $\bigoplus_i f_i$ of multiple independent feature fields

 \Rightarrow field types ho_i and multiplicities as hyperparameters

Steerable CNN layers map between feature fields of types $ho_{
m in}$ and $ho_{
m out}$

Steerable CNN layers map between feature fields of types $ho_{
m in}$ and $ho_{
m out}$

flexible ansatz

weight sharing + G-steerability

approach: - start with flexible ansatz for layers

- demand $\operatorname{Aff}(G)$ -equivariance, resulting in...

1) spatial weight sharing — $(\mathbb{R}^d, +) \rtimes G =: Aff(G)$ 2) *G*-steerability —

Linear equivariant maps \Leftrightarrow *G*-steerable convolutions

ansatz for linear map:

generic integral transform
$$I_{\kappa}[f](x) := \int_{\mathbb{R}^d} dy \ \kappa(x, y) f(y)$$

parameterized by 2-point correlator $\kappa: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^{c_{\mathrm{out}} \times c_{\mathrm{in}}}$

y_{1} $\kappa(x_{1}, y_{1}) = K(x_{1} - y_{1})$ x_{1} x_{2} y_{2} $\kappa(x_{2}, y_{2}) = K(x_{2} - y_{2})$

demanding Aff(G)-equivariance:

Theorem. The integral transform I_{κ} is Aff(G) equivariant iff:

1) *it is a* convolution integral

$$\mathbf{I}_{\kappa}[f](x) = [K * f](x) = \int_{\mathbb{R}^d} dy \ K(x - y) f(y) \,.$$

with a matrix valued kernel $K : \mathbb{R}^d \to \mathbb{R}^{c_{\text{out}} \times c_{\text{in}}}$ defined by translation relativity $\kappa(x, y) = K(x - y)$

2) the kernel is G-steerable: $K(gx) = \frac{1}{|\det g|} \rho_{\text{out}}(g) K(x) \rho_{\text{in}}(g)^{-1} \quad \forall g \in G, x \in \mathbb{R}^d$

ansatz for linear map:

generic integral transform
$$I_{\kappa}[f](x) := \int_{\mathbb{R}^d} dy \ \kappa(x,y) f(y)$$

parameterized by 2-point correlator $\kappa: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^{c_{\mathrm{out}} \times c_{\mathrm{in}}}$

demanding Aff(G)-equivariance:

Theorem. The integral transform I_{κ} is Aff(G) equivariant iff:

1) *it is a* convolution integral

$$\mathbf{I}_{\kappa}[f](x) = [K * f](x) = \int_{\mathbb{R}^d} dy \ K(x - y) f(y)$$

with a matrix valued kernel $K : \mathbb{R}^d \to \mathbb{R}^{c_{\text{out}} \times c_{\text{in}}}$ defined by translation relativity $\kappa(x, y) = K(x - y)$

2) the kernel is G-steerable: $K(gx) = \frac{1}{|\det g|} \rho_{\text{out}}(g) K(x) \rho_{\text{in}}(g)^{-1} \quad \forall g \in G, x \in \mathbb{R}^d$

Linear equivariant maps \Leftrightarrow *G*-steerable convolutions

ansatz for linear map:

Theorem. The integral transform I_{κ} is Aff(G) equivariant iff:

1) *it is a* convolution integral

$$\mathbf{I}_{\kappa}[f](x) = [K * f](x) = \int_{\mathbb{R}^d} dy \ K(x - y) f(y) \, .$$

with a matrix valued kernel $K : \mathbb{R}^d \to \mathbb{R}^{c_{\text{out}} \times c_{\text{in}}}$ defined by translation relativity $\kappa(x, y) = K(x - y)$

2) the kernel is G-steerable.
$$K(gx) = \frac{1}{|\det g|} \rho_{out}(g) K(x) \rho_{in}(g)^{-1} \quad \forall g \in G, x \in \mathbb{R}^d \longleftarrow$$

convolution kernels summarize their field of view around $x \in \mathbb{R}^d$ into a feature vector $f(x) \in \mathbb{R}^{c_{\text{out}}}$

G-steerable kernels guarantee: *G*-trafo of their input field of view \Rightarrow *G*-trafo of the output feature vector

G-steerable kernels – reflection group example

example: *reflection* steerable kernels $G = \{e, s\}, s^2 = e$

G-steerable kernels – reflection group example

example: *reflection* steerable kernels $G = \{e, s\}, s^2 = e$

field type $ ho$	ho(e)	ho(s)	original field	transformed field
trivial / scalar	(1)	(1)		
sign-flip / pseudo-scalar	(1)	(-1)		
regular	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$		
G-steerable kernels – reflection group example

example: *reflection* steerable kernels $G = \{e, s\}, s^2 = e$

general steerability constraint:
$$K(gx) = \frac{1}{|\det g|} \rho_{out}(g) K(x) \rho_{in}(g)$$

 $|\det g| = 1$
 $g = g^{-1}$
 $g =$

G-steerable kernels – reflection group examples

full derivation of these examples @ Weiler et al. 2021, Coordinate Independent Convolutional Networks, Section 5.3.3

to solve the G-steerability kernel constraint in general, observe that:

- the set $\{K: \mathbb{R}^d \to \mathbb{R}^{c_{out} \times c_{in}}\}$ of *unconstrained* convolution kernels forms a *vector space*

- the constraint $K(gx) = \frac{1}{|\det g|} \rho_{\text{out}}(g) K(x) \rho_{\text{in}}(g)^{-1} \quad \forall \ g \in G, \ x \in \mathbb{R}^d$ is linear

 \implies *G*-steerable kernels form a *linear (vector) subspace* !

to parameterize steerable convolutions:

1) solve for a *basis* $\{K_1, \ldots, K_N\}$ of *G*-steerable kernels (precomputation step) 2) expand kernel in this basis with trainable weights: $K = \sum_{i=1}^{N} w_i K_i$ (during forward pass)

G-steerable kernels – Wigner-Eckart theorem

analytical solution for compact G

(including in particular any $\ G \leq {
m O}(d)$)

E(n)-EQUIVARIANT STEERABLE CNNS

based on an analogy: G-steerable kernels \Leftrightarrow tensor operators in QM

A WIGNER-ECKART THEOREM FOR GROUP EQUIVARIANT CONVOLUTION KERNELS

Leon Lang* AMLab, CSL University of Amsterdam l.lang@uva.nl Maurice Weiler AMLab, QUVA Lab University of Amsterdam m.weiler.ml@gmail.com

Gabriele Cesa Qualcomm AI Research* University of Amsterdam gcesa@qti.qualcomm.com

A PROGRAM TO BUILD

Leon Lang University of Amsterdam

Maurice Weiler n University of Amsterdam m.weiler.ml@gmail.com

Leon Lang

Gabriele Cesa

the solution decomposes steerable kernels into:

- harmonics on G-orbits (Peter-Weyl)
- Clebsch-Gordan coefficients
- irrep endomorphisms (reduced matrix elements)

G-steerable kernels – Wigner-Eckart theorem

analytical solution for compact G

(including in particular any $\ G \leq {
m O}(d)$)

E(n)-EQUIVARIANT STEERABLE CNNS

based on an analogy: G-steerable kernels \Leftrightarrow tensor operators in QM

A WIGNER-ECKART THEOREM FOR GROUP EQUIVARIANT CONVOLUTION KERNELS

Leon Lang* AMLab, CSL University of Amsterdam l.lang@uva.nl Maurice Weiler AMLab, QUVA Lab University of Amsterdam m.weiler.ml@gmail.com

Gabriele Cesa Qualcomm AI Research* University of Amsterdam gcesa@qti.qualcomm.com

A PROGRAM TO BUILD

Leon Lang University of Amsterdam 1.lang@uva.nl

Maurice Weiler n University of Amsterdam m.weiler.ml@gmail.com

Leon Lang

Gabriele Cesa

the solution decomposes steerable kernels into:

- harmonics on G-orbits (Peter-Weyl)
- Clebsch-Gordan coefficients
- irrep endomorphisms (reduced matrix elements)

we get transition rules between irrep-fields (as in quantum mechanics)

Linear equivariant maps \Leftrightarrow *G*-steerable convolutions

STEERABLE PARTIAL DIFFERENTIAL OPERATORS FOR EQUIVARIANT NEURAL NETWORKS

Erik Jenner* University of Amsterdam erik@ejenner.com Maurice Weiler University of Amsterdam m.weiler.ml@gmail.com

linear maps revisited:

our integral transform ansatz
$$~ { t I}_\kappaig[fig](x):=\int_{\mathbb{R}^d}\!dy\;\kappa(x,y)\,f(y)$$
 does not cover all possible linear maps

a stronger version of the theorem proves:

continuous, Aff(G)-equivariant linear maps \Leftrightarrow convolutions with *G***-steerable Schwartz distributions**

the distributional setting covers in particular equivariant partial differential operators

flexible ansatz:

consider a general bias summation operation $f \mapsto f + \mathfrak{b}$

parameterized by a **bias field** $\mathfrak{b} : \mathbb{R}^d \to \mathbb{R}^c \implies$ allows to sum a *different bias* $\mathfrak{b}(x) \in \mathbb{R}^c$ at each $x \in \mathbb{R}^d$

demanding equivariance, we get:

Theorem. The bias field summation Aff(G)-equivariant iff the bias field is Aff(G)-invariant. This requires in particular

1) a spatially constant bias field, i.e. $\mathfrak{b}(x) = b$ for some shared bias $b \in \mathbb{R}^c$, and

2) this shared bias needs to be G-invariant, that is, $b = \rho(g)b \quad \forall g \in G$.

similar results for nonlinearities, pooling operations, etc.

e2cnn / escnn library

PyTorch extension for Aff(G)-steerable CNNs (for compact G)

General E(2) - Equivariant Steerable CNNs

Maurice Weiler* University of Amsterdam, QUVA Lab m.weiler@uva.nl **Gabriele Cesa***† University of Amsterdam cesa.gabriele@gmail.com

A PROGRAM TO BUILD E(n)-EQUIVARIANT STEERABLE CNNS

Gabriele Cesa Qualcomm AI Research* University of Amsterdam gcesa@qti.qualcomm.com Leon Lang University of Amsterdam l.lang@uva.nl

Maurice Weiler University of Amsterdam m.weiler.ml@gmail.com

convolution in native PyTorch:

conv = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=5)

convolution in e2cnn / escnn:

github: https://github.com/QUVA-Lab/e2cnn https://github.com/QUVA-Lab/escnn

Equivariance demonstration

SE(2)-steerable CNN:

conventional CNN:

group convolutions as drop in replacement

- same number of parameters
- same training setup
- no hyperparameter tuning

model	CIFAR-10	CIFAR-100	STL-10
CNN baseline	2.6 ± 0.1	17.1 ± 0.3	12.74 ± 0.23
GCNN	2.05 ± 0.03	14.30 ± 0.09	9.80 ± 0.40

Test errors on natural image datasets

extensive benchmark of:

- groups $G \leq O(2)$
- G-representations / field types
- G-equivariant nonlinearities
- invariant maps

covering a wide range of related work and new models

group	representation		nonlinearity	invariant map	citation	MNISTO(2)	MNIST rot	MNIST 12k
$: \{e\}$	(conventional C	NN)	ELU	-	-	5.53 ± 0.20	2.87 ± 0.09	0.91 ± 0.06
2 C ₁					7.9	5.19 ± 0.08	2.48 ± 0.13	0.82 ± 0.01
3 C ₂					7.9	3.29 ± 0.07	1.32 ± 0.02	0.87 ± 0.04
4 C ₃					-	2.87 ± 0.04	1.19 ± 0.06	0.80 ± 0.03
5 C4				6.	1. 7. 9. 10	2.40 ± 0.05	1.02 ± 0.03	0.99 ± 0.03
6 C ₆	regular	$\rho_{\rm reg}$	ELU	G-pooling	8	2.08 ± 0.03	0.89 ± 0.03	0.84 ± 0.02
7 C ₈					7.9	1.96 ± 0.04	0.84 ± 0.02	0.89 ± 0.03
8 C ₁₂					[7]	1.95 ± 0.07	0.80 ± 0.03	0.89 ± 0.03
9 C ₁₆					7.9	1.93 ± 0.04	0.82 ± 0.02	0.95 ± 0.04
10 C ₂₀					7	1.95 ± 0.05	0.83 ± 0.05	0.94 ± 0.06
11 C ₄		$5\rho_{reg} \oplus 2\rho_{quot}^{C_4/C_2} \oplus 2\psi_0$			1	2.43 ± 0.05	1.03 ± 0.05	1.01 ± 0.03
12 C ₈		$5\rho_{reg} \oplus 2\rho_{quot}^{C_8/C_2} \oplus 2\rho_{quot}^{C_8/C_4} \oplus 2\psi_0$			-	2.03 ± 0.05	0.84 ± 0.05	0.91 ± 0.02
13 C ₁₂	quotient	$5\rho_{reg} \oplus 2\rho_{quot}^{C_{12}/C_2} \oplus 2\rho_{quot}^{C_{12}/C_4} \oplus 3\psi_0$			14	2.04 ± 0.04	0.81 ± 0.02	0.95 ± 0.02
14 C ₁₆		$5\rho_{reg} \oplus 2\rho_{quot}^{\tilde{c}_{16}/C_2} \oplus 2\rho_{quot}^{\tilde{c}_{16}/C_4} \oplus 4\psi_0$			-	2.00 ± 0.01	0.86 ± 0.04	0.98 ± 0.04
15 C ₂₀		$5\rho_{reg} \oplus 2\rho_{quot}^{\dot{c}_{20}/c_2} \oplus 2\rho_{quot}^{\dot{c}_{20}/c_4} \oplus 5\psi_0$			-	2.01 ± 0.05	0.83 ± 0.03	0.96 ± 0.04
16	regular/scalar	$\psi_0 \xrightarrow{\text{conv}} \rho_{reg} \xrightarrow{G\text{-pool}} \psi_0$	ELU, G-pooling		6.36	2.02 ± 0.02	0.90 ± 0.03	0.93 ± 0.04
17 Cae	regular/vector	$\psi_1 \xrightarrow{\text{conv}} \rho_{\text{exc}} \xrightarrow{\text{vector pool}} \psi_2$	vector field		13 37	2.12 ± 0.02	1.07 ± 0.03	0.78 + 0.03
18	mixed vector	$a_{rec} \oplus \psi_1 \xrightarrow{\text{conv}} 2a_{rec} \xrightarrow{\text{vector}} a \oplus \psi_1$	ELU vector field			1.87 ± 0.02	0.83 + 0.02	0.63+0.03
10	linked vector	preg © \$1 / 2preg pool / preg © \$1	EEC, vector nerd			1.01 ± 0.05	0.00 ± 0.02	0.00 ± 0.02
19 D ₁					-	3.40 ± 0.07	3.44 ± 0.10	0.98 ± 0.03
20 D ₂					-	2.42 ± 0.07	2.39 ± 0.04	1.05 ± 0.03
21 D ₃					-	2.17 ± 0.06	2.15 ± 0.05	0.94 ± 0.02
22 D ₄				<i>a r</i>	6.1.38	1.88 ± 0.04	1.87 ± 0.04	1.69 ± 0.03
23 D ₆	regular	$\rho_{\rm reg}$	ELU	G-pooling	8	1.77 ± 0.06	1.77 ± 0.04	1.00 ± 0.03
24 D ₈					-	1.68 ± 0.06	1.73 ± 0.03	1.64 ± 0.02
25 D ₁₂					-	1.66 ± 0.05	1.65 ± 0.05	1.67 ± 0.01
26 D ₁₆					-	1.62 ± 0.04	1.65 ± 0.02	1.68 ± 0.04
27 D ₂₀		com: Gunool			-	1.64 ± 0.06	1.62 ± 0.05	1.69 ± 0.03
28 D ₁₆	regular/scalar	$\psi_{0,0} \xrightarrow{\text{conv}} \rho_{\text{reg}} \xrightarrow{\text{orposition}} \psi_{0,0}$	ELU, G-pooling		-	1.92 ± 0.03	1.88 ± 0.07	1.74 ± 0.04
29	irreps ≤ 1	$\bigoplus_{i=0}^{1} \psi_i$			-	2.98 ± 0.04	1.38 ± 0.09	1.29 ± 0.05
30	irreps ≤ 3	$\bigoplus_{i=0}^{3} \psi_i$			-	3.02 ± 0.18	1.38 ± 0.09	1.27 ± 0.03
31	irreps ≤ 5	$\bigoplus_{i=0}^{3} \psi_i$			-	3.24 ± 0.05	1.44 ± 0.10	1.36 ± 0.04
32	irreps ≤ 7	$\bigoplus_{i=0}^{i} \psi_i$	ELU, norm-ReLU	conv2triv	-	3.30 ± 0.11	1.51 ± 0.10	1.40 ± 0.07
33	\mathbb{C} -irreps ≤ 1	$\bigoplus_{i=0}^{1} \psi_{i}^{\mathbb{C}}$			12	3.39 ± 0.10	1.47 ± 0.06	1.42 ± 0.04
34	\mathbb{C} -irreps ≤ 3	$\bigoplus_{i=0}^{3} \psi_i^{\mathbb{C}}$			12	3.48 ± 0.16	1.51 ± 0.05	1.53 ± 0.07
35	\mathbb{C} -irreps ≤ 5	$\bigoplus_{i=0}^{3} \psi_i^{\mathbb{C}}$				3.59 ± 0.08	1.59 ± 0.05	1.55 ± 0.06
³⁶ SO(2)	\mathbb{C} -irreps ≤ 7	$\bigoplus_{i=0}^{i} \psi_{i}^{C}$			-	3.64 ± 0.12	1.61 ± 0.06	1.62 ± 0.03
37			ELU, squash		-	3.10 ± 0.09	1.41 ± 0.04	1.46 ± 0.05
38			ELU, norm-ReLU		-	3.23 ± 0.08	1.38 ± 0.08	1.33 ± 0.03
39			ELU, shared norm-ReLU	norm		2.88 ± 0.11	1.15 ± 0.06	1.18 ± 0.03
40	irreps ≤ 3	$\bigoplus_{i=0}^{3} \psi_i$	shared norm-ReLU		-	3.61 ± 0.09	1.57 ± 0.05	1.88 ± 0.05
41	. –	↓ 1=0 / *	ELU, gate	conv2triv	-	2.37 ± 0.06	1.09 ± 0.03	1.10 ± 0.02
42			ELU, shared gate		-	2.33 ± 0.06	1.11±0.03	1.12 ± 0.04
43			ELU, gate	norm		2.23 ± 0.09	1.04 ± 0.04	1.05 ± 0.06
44			ELU, shared gate		-	2.20 ± 0.06	1.01 ± 0.03	1.03 ± 0.03
45	irreps = 0	$\psi_{0,0}$	ELU	-		5.46 ± 0.46	5.21 ± 0.29	3.98 ± 0.04
46	irreps ≤ 1	$\psi_{0,0} \oplus \psi_{1,0} \oplus 2\psi_{1,1}$			-	3.31 ± 0.17	3.37 ± 0.18	3.05 ± 0.09
47	$irreps \le 3$	$\psi_{0,0} \oplus \psi_{1,0} \bigoplus_{i=1}^{o} 2\psi_{1,i}$	ELU, norm-ReLU	O(2)-conv2triv	-	3.42 ± 0.03	3.41 ± 0.10	3.86 ± 0.09
48	$meps \le 5$	$\psi_{0,0} \oplus \psi_{1,0} \bigoplus_{i=1}^{n} 2\psi_{1,i}$			-	3.59 ± 0.13	3.78 ± 0.31	4.17 ± 0.15
49	$meps \le 7$	$\psi_{0,0} \oplus \psi_{1,0} \bigoplus_{i=1}^{:} 2\psi_{1,i}$			-	3.84 ± 0.25	3.90 ± 0.18	4.57 ± 0.27
50	Ind-irreps ≤ 1	Ind $\psi_0^{SO(2)} \oplus$ Ind $\psi_1^{SO(2)}$			-	2.72 ± 0.05	2.70 ± 0.11	2.39 ± 0.07
51 O(2)	Ind-irreps ≤ 3	Ind $\psi_0^{SO(2)} \bigoplus_{i=1}^{s} \operatorname{Ind} \psi_i^{SO(2)}$	ELU. Ind norm-Rel U	Ind-conv2triv	-	2.66 ± 0.07	2.65 ± 0.12	2.25 ± 0.06
52	Ind-irreps ≤ 5	Ind $\psi_0^{SO(2)} \bigoplus_{i=1}^{5} \text{Ind } \psi_i^{SO(2)}$			-	2.71 ± 0.11	2.84 ± 0.10	2.39 ± 0.09
53	Ind-irreps ≤ 7	Ind $\psi_0^{SO(2)} \bigoplus_{i=1}^7 \text{Ind } \psi_i^{SO(2)}$			-	2.80 ± 0.12	2.85 ± 0.06	2.25 ± 0.08
54	irrens < 3	ale o ale o \mathbb{O}^3 Dale o	FLU gate	O(2)-conv2triv	-	2.39 ± 0.05	2.38 ± 0.07	2.28 ± 0.07
55	meps ≥ 0	$\psi_{0,0} \oplus \psi_{1,0} \bigoplus_{i=1}^{2} \psi_{1,i}$	LLO, gate	norm		2.21 ± 0.09	2.24 ± 0.06	2.15 ± 0.03
56	Ind-irrens < 2	Lad SO(2) 3 L SO(2)	FLU Ind geta	Ind-conv2triv	-	2.13 ± 0.04	2.09 ± 0.05	2.05 ± 0.05
57	$ma-meps \le 3$	Ind $\psi_0 = \bigoplus_{i=1}^{-1} \operatorname{Ind} \psi_i$	ELO, Ind gate	Ind-norm		1.96 ± 0.06	1.95 ± 0.05	1.85 ± 0.07

Emperical results – reinforcement learning

On-Robot Learning With Equivariant Models

Dian Wang Mingxi Jia Xupeng Zhu Robin Walters Robert Platt Khoury College of Computer Sciences Northeastern University Boston, MA 02115, USA

Local gauge equivariance

steerable CNNs are not only *globally* Aff(G)-equivariant, but *locally* G-equivariant (gauge equivariant)

formalized as coordinate independent CNN

Active & passive transformations

active transformations - acting on the data itself:

global transformations

passive transformations - acting on coordinatization of data:

vs.

Coordinate independent CNNs on Riemannian manifolds

Principle of Covariance (Einstein, 1916) "Universal laws of All are to be expressed by equations which hold good for all systems of coordinates."

Convolutions on Riemannian manifolds

Image adapted from Konakovic-Lukovic et al.

how to ...

- ... define *feature fields* on M?
- ... define *convolution kernels* on M ?
- \dots share weights over M ?
- ... guarantee isometry equivariance?

Weight sharing - via global symmetries

weight sharing by demanding equivariance w.r.t. global symmetries (isometries)

can only share over symmetry orbits (in general non-transitive)

Weight sharing - via parallel transport

sharing weights by "shifting" kernel over manifold ?

1 parallel transport in general path dependent

Weight sharing - approaches in the literature

the kernel alignment ("gauge") on manifolds is inherently ambiguous!

 $\Leftrightarrow \qquad \mbox{topological obstructions to} \\ \mbox{the existence of G-structures} \end{cases}$

solution approaches in the literature:

1) gauge invariant features 1 low expressiveness

2) heuristic gauges

1 instable under deformations

3) spectral approaches

gauge independent but instable under deformations

4) gauge equivariant features (ours, covers 1,2 as special cases)

Reference frames and kernel alignments

identify kernel alignment with a choice of reference frame

Reference frames and kernel alignments

identify kernel alignment with a choice of reference frame

frame field \checkmark kernel field

standard (canonical) frame / kernel field / CNN on $\ensuremath{\mathbb{R}}^2$

alternative frame / kernel field / CNN on \mathbb{R}^2

Reference frames and kernel alignments

identify kernel alignment with a choice of reference frame

frame field \checkmark kernel field

G-structures

frame bundle FM = "set" (bundle) of all frames (GL(*d*)-valued transition functions)

G-structures GM = sub-bundles of frames with $G \leq \operatorname{GL}(d)$ valued transition functions

G-structures

frame bundle FM = "set" (bundle) of all frames (GL(*d*)-valued transition functions)

G-structures GM = sub-bundles of frames with $G \leq GL(d)$ valued transition functions

G-structures encode **additional geometric structure on M** in a unified way:

structure on M	distinguished frames	structure group $G \leq \operatorname{GL}(d)$
smooth structure only	all reference frames	$\operatorname{GL}(d)$
orientation of M	positively oriented frames	$\mathrm{GL}^+(d)$
volume form	unit volume frames	$\mathrm{SL}(d)$
Riemannian metric	orthonormal frames	$\mathrm{O}(d)$
pseudo-Riemannian metric	pseudo-orthonormal frames	$\mathrm{O}(d-n,n)$
global trivialization	global frame field	$\{e\}$

Klein bottle non-orientable

topological obstructions may prevent the existence of (continuous) G-structures

 $M = \mathbb{R}^2, \ G = \{e\}$

 $M=\mathbb{R}^2,\ G=\mathcal{R}$

 $M = \mathbb{R}^2, \ G = \mathrm{SO}(2)$

 $M = \mathbb{R}^2, \ G = \{e\}$

 $M=\mathbb{R}^2,\ G=\mathcal{R}$

 $M = \mathbb{R}^2, \ G = \mathcal{S}$

 $M = \mathbb{R}^2 \setminus \{0\}, \ G = \{e\}$

 $M = S^2, \ G = \mathrm{SO}(2)$

 $M = \mathbb{R}^2 \backslash \{0\}, \ G = \mathcal{R}$

 $M=S^2\backslash {\rm poles},\ G=\{e\}$

M = "Suzanne", G = SO(2)

M =Möbius, $G = \mathcal{R}$

GM-coordinate independence - tangent vectors

all frames of the G-structure are equally valid

 \implies any object or morphism should be expressible relative to any frame in GM

GM-coordinate independence - tangent vectors

all frames of the G-structure are equally valid

 \implies any object or morphism should be expressible relative to any frame in GM

example: - tangent vectors $v \in T_pM$ are coordinate free

- in gauge A, v is expressed by coefficients $v^A \in \mathbb{R}^d$ - in gauge B, v is expressed by coefficients $v^B \in \mathbb{R}^d$ - gauge trafos $g^{BA} \in G$ relate coefficients: $v^B = g^{BA}v^A$

different coefficients, same information content!

GM-coordinate independence - feature vector fields

all frames of the G-structure are equally valid

 \implies any *object* or *morphism* should be expressible relative to any frame in *GM*

coordinate independent *feature vectors* transform according to *G*-representation ρ :

 $f^A, f^B \in \mathbb{R}^c \qquad \qquad f^B = \rho(g^{BA}) f^A$

scalar field	trivial representation	$\rho(g) = id$
tangent vector field	standard representation	$\rho(g) = g$
tensor field	tensor representation	$\rho(g) = (g^{-T})^{\otimes s} \otimes g^{\otimes r}$
irrep field	irreducible representation	
regular feature field	regular representation	

formally, feature vectors are elements of a G-associated feature vector bundle $(GM \times \mathbb{R}^c) / \sim_{\rho}$

GM-coordinate independence - linear maps on $T_{p}M_{1}$

all frames of the G-structure are equally valid

 \implies any object or morphism should be expressible relative to any frame in GM

example: - linear maps $\mathcal{M}: T_pM \to T_pM$ are coordinate free

- in gauge A, \mathcal{M} is expressed by *coefficients* $\mathcal{M}^A \in \mathbb{R}^{d imes d}$
- in gauge B, \mathcal{M} is expressed by coefficients $\mathcal{M}^B \in \mathbb{R}^{d \times d}$
- gauge trafos $g^{BA} \in G$ relate coefficients: $\mathcal{M}^B = g^{BA} \mathcal{M}^A (g^{BA})^{-1}$

GM-coordinate independence - kernels

GM-coordinate independence - kernels

(active)

- 2) local gauge equivariance
- 3) global isometry equivariance (active)

symmetry properties:

1) *GM*-coordinate independence

- 2) local gauge equivariance
- 3) global isometry equivariance
- (passive)
- (active)
- (active)

symmetry properties:

1) *GM*-coordinate independence

2) local gauge equivariance

3) global isometry equivariance

(active)

(active)

(passive)

1)	GM-coordinate independence	(passive)
2)	local gauge equivariance	(active)
3)	global isometry equivariance	(active)
"kernel field transform": similar to convolution, but not assuming weight sharing

parameterized by a kernel field

Theorem: let $\mathcal{I} \leq \text{Isom}(M)$, then:

I-equivariant kernel field transform

 \iff

SO(2)-invariant

kernel field

O(2)-invariant kernel field

Isometry equivariance - *GM*-convolutions

Let $Isom_{GM} \leq Isom(M)$ be the subgroup of isometries that are symmetries of GM

G-steerable (convolutional) kernel fields inherit this $Isom_{GM}$ -invariance

 \implies GM-convolutions are Isom_{GM} -equivariant

- horizontal translations

- horizontal translations
- vertical translations
- horizontal reflections

Isometry equivariance - *GM*-convolutions

 $M=\mathbb{R}^2,\ G=\{e\}$

 $M=\mathbb{R}^2,\ G=\mathcal{R}$

 $M = \mathbb{R}^2, \ G = \mathrm{SO}(2)$

 $M=\mathbb{R}^2,\ G=\{e\}$

 $M=\mathbb{R}^2,\ G=\mathcal{R}$

 $M = \mathbb{R}^2, \ G = \mathcal{S}$

 $M = \mathbb{R}^2 \backslash \{0\}, \ G = \mathcal{R}$

 $M=S^2\backslash {\rm poles},\ G=\{e\}$

 $M = S^2, \ G = \mathrm{SO}(2)$

M = "Suzanne", G = SO(2)

M =Möbius, $G = \mathcal{R}$

COORDINATE INDEPENDENT CONVOLUTIONAL NETWORKS

H Regular feature fields as scalar functions on G-structure

ISOMETRY AND GAUGE EQUIVARIANT CONVOLUTIONS ON RIEMANNIAN MANIFOLDS

1	Introduction	2
2	Overview and visual intuition	10
I	An introduction to coordinate independent CNNs	21
3	Coordinate independent feature fields 3.1 Gauges, gauge transformations and G-structures 3.2 Coordinate independent feature vector fields 3.3 Parallel transport of feature vectors 3.4 Isometry actions and induced gauge transformations Coordinate independent networks and GM-convolutions	 22 30 34 37 40
	4.1 Pointwise gauge equivariant operations 4.2 Kernel field transforms and <i>GM</i> -convolutions 4.3 Isometry equivariance	41 45 54
5	Toy model: reflection equivariant Möbius convolutions 5.1 Geometry of the Möbius strip . 5.2 Orientation independent feature fields . 5.3 Orientation independent convolutional networks . 5.4 Numerical implementation and evaluation of Möbius convolutions .	57 58 60 61 66
п	Theory of coordinate independent CNNs	73
6	Associated bundles and coordinate free feature fields 6.1 A brief introduction to fiber bundles 6.2 The tangent bundle TM and frame bundle FM 6.3 G-structures GM and associated feature vector bundles A 6.4 Local bundle trivializations of TM, FM, GM and A 6.5 Parallel transporters on associated bundles	73 74 80 83 86 92
7	Coordinate free kernel field transforms and GM-convolutions 7.1 1×1 GM-convolutions 7.2 Kernel field transforms and GM-convolutions	96 96 101
8	Isometry equivariance 8.1 Isometries and their action on manifolds, bundles and fields	109 110 123 129

п	I A literature review on coordinate independent CNNs	140
9	Euclidean coordinate independent CNNs 9.1 Classical formulation of G -steerable CNNs on \mathbb{R}^d 9.2 Affine geometry of Euclidean spaces \mathbb{E}_d 9.3 Affine group equivariant CNNs on Euclidean spaces \mathbb{E}_d 9.4 Euclidean CNNs in the literature	145 146 149 155 158
10	Rotation equivariant CNNs on punctured Euclidean spaces	161
11	Spherical coordinate independent CNNs 11.1 Geometry of the 2-sphere S ² 11.2 Fully rotation equivariant spherical CNNs 11.3 Azimuthal rotation equivariant spherical CNNs on cylindrical topologies 11.4 Icosahedral approximations of spherical CNNs Coordinate independent CNNs	169 171 174 179 184
12	12.1 Geometry of embedded surfaces 12.2 Rotation-steerable surface convolutions 12.3 {e}-steerable surface convolutions	199 [207]
TX	/ Conclusion	0.1.0
13	Conclusion	212
v	Appendix	212
V A	Appendix Relation to the coordinate chart formalism of differential geometry A.1 Tangent spaces, cotangent spaces and dual bases A.2 Differentials, gradients and Jacobians A.3 Chart induced coordinate bases A.4 Coordinate bases as local bundle trivializations A.5 G-structures and vielbein fields	212 216 216 . 217 . 218 . 220 . 224 . 224
V A B	Appendix Relation to the coordinate chart formalism of differential geometry A.1 Tangent spaces, cotangent spaces and dual bases A.2 Differentials, gradients and Jacobians A.3 Chart induced coordinate bases A.4 Coordinate bases as local bundle trivializations A.5 G-structures and vielbein fields Coordinate independent weight sharing and G-steerable kernels	216 216 . 217 . 217 . 218 . 220 . 224 . 224 . 226 230
V A B C	Appendix Relation to the coordinate chart formalism of differential geometry A.1 Tangent spaces, cotangent spaces and dual bases A.2 Differentials, gradients and Jacobians A.3 Chart induced coordinate bases A.4 Coordinate bases as local bundle trivializations A.5 G-structures and vielbein fields Coordinate independent weight sharing and G-steerable kernels Integration over tangent spaces	212 216 217 217 217 218 220 224 224 226 230 231
V A B C D	Appendix Relation to the coordinate chart formalism of differential geometry A.1 Tangent spaces, cotangent spaces and dual bases A.2 Differentials, gradients and Jacobians A.3 Chart induced coordinate bases A.4 Coordinate bases as local bundle trivializations A.5 G-structures and vielbein fields Coordinate independent weight sharing and G-steerable kernels Integration over tangent spaces Equivariant convolutions on homogeneous spaces	212 216 217 217 218 220 220 220 220 230 230 231 232
V A B C D E	Appendix Relation to the coordinate chart formalism of differential geometry A.1 Tangent spaces, cotangent spaces and dual bases A.2 Differentials, gradients and Jacobians A.3 Chart induced coordinate bases A.4 Coordinate bases as local bundle trivializations A.5 G-structures and vielbein fields Coordinate independent weight sharing and G-steerable kernels Integration over tangent spaces Equivariant convolutions on homogeneous spaces Quotient representative kernel fields – proofs	212 216 216 217 217 218 220 220 224 230 231 232 232 245
V A B C D E F	Appendix Relation to the coordinate chart formalism of differential geometry A.1 Tangent spaces, cotangent spaces and dual bases A.2 Differentials, gradients and Jacobians A.3 Chart induced coordinate bases A.4 Coordinate bases as local bundle trivializations A.5 G-structures and vielbein fields Coordinate independent weight sharing and G-steerable kernels Integration over tangent spaces Equivariant convolutions on homogeneous spaces Quotient representative kernel fields – proofs Spherical steerable convolutions as GM-convolutions – proofs	212 216 217 217 217 218 220 220 220 220 230 230 231 232 232 232 232

258

Thank you

Maurice Weiler AMLab, QUVA Lab University of Amsterdam

y @maurice_weiler

