CP-VIOLATION STUDIES WITH THE DZERO DETECTOR THE DZERO DETECTOR S. Burdin (Liverpool) Helmholtz Alliance Videoconference Seminar Universität Bonn 15 November 2010

- 1. Big Bang
- 2. Equal amounts of matter and antimatter
- 3. Some processes lead to slight dominance of matter over antimatter
- 4. Annihilation
- 5. We are left with a lot of photons and "few" baryons: $\frac{N_B}{N_{\gamma}} = 6 \times 10^{-10}$

EIVERPOOL Sakharov's conditions of our

Universe existence

- They were formulated in 1967
 - Inspired by the CP violation discovery in the kaon system
 - Baryon number violation
- C, CP violation
- These processes happened when the Universe was not in thermal equilibrium

Baryon number violation

$$\frac{N_{b}(t)-N_{\overline{b}}(t)}{N_{b}(t)+N_{\overline{b}}(t)}\approx\frac{\Delta N_{b}}{N_{\gamma}}$$

Now:
$$\frac{\Delta N_b}{N_{\gamma}} = (6.1 \pm 0.3) \times 10^{-10}$$
 (WMAP)

- Current estimates from the SM: $\sim 10^{-20}$
- 10 orders of magnitude difference

CP violation

 CP violation (CPV) – violation of symmetry of physics laws in combined Chargeconjugate and Parity transformation

CP-violation @ D0

Standard Model

Area of the Unitarity Triangle is proportional to the CP violation in the

Standard Model due to CKM Matrix

CPV: CKM matrix

• Wolfenstein parameterization of CKM matrix

$$V_{CKM} \approx \begin{pmatrix} 1 - \hat{x}^2/2 & \lambda & A\hat{x}^3(\rho + i\eta) \\ -\lambda & 1 - \hat{x}^2/2 & A\hat{x}^2 \\ A\hat{x}^3(1 - \rho + i\eta) & -A\hat{x}^2\left(1 - \frac{1 - 2\rho}{2}\hat{x}^2 + i\eta\hat{x}^2\right) & 1 \end{pmatrix} + O(\hat{x}^4)$$

η≈0.35 – CP violation in SM

• Angle β_s in SM small \rightarrow NP effects more visible

11/15/2010

CP-violation @ D0

9

- Charge of the muon at the same-side → final state
- Charge of the muon at the opposite-side \rightarrow initial state

The dimuon charge asymmetry of semileptonic *B* decays:

$$A_{sl}^{b} \equiv \frac{N_{b}^{++} - N_{b}^{--}}{N_{b}^{++} + N_{b}^{--}}$$

CP Violation in Mixing

Direct decay rates:

$$\Gamma\left(B_{s}^{0}(t) \to \mu^{+}X\right) = N_{f} \left|A_{f}\right|^{2} e^{-\Gamma_{s}t} \left\{\cosh\frac{\Delta\Gamma_{s}t}{2} + \cos\left(\Delta M_{s}t\right)\right\} / 2$$

$$\Gamma\left(\overline{B}_{s}^{0}(t) \to \mu^{-}X\right) = N_{f} \left|\overline{A}_{f}\right|^{2} e^{-\Gamma_{s}t} \left\{\cosh\frac{\Delta\Gamma_{s}t}{2} + \cos\left(\Delta M_{s}t\right)\right\} / 2$$
Advised decays rates:

Mixed decay rates:

$$\Gamma\left(\overline{B}_{s}^{0}(t) \to \mu^{+}X\right) = N_{f} \left|A_{f}\right|^{2} \left(1 + a_{sl}^{s}\right) e^{-\Gamma_{s}t} \left\{\cosh\frac{\Delta\Gamma_{s}t}{2} - \cos(\Delta M_{s}t)\right\} / 2$$

$$\Gamma\left(B_{s}^{0}(t) \to \mu^{-}X\right) = N_{f} \left|\overline{A}_{\bar{f}}\right|^{2} \left(1 - a_{sl}^{s}\right) e^{-\Gamma_{s}t} \left\{\cosh\frac{\Delta\Gamma_{s}t}{2} - \cos(\Delta M_{s}t)\right\} / 2$$
No direct CP violation $\Rightarrow \left|A_{f}\right| = \left|\overline{A}_{\bar{f}}\right|$

VILVERPOOL Analysis with initial-state

tagging

Select only mixed decays

$$\Gamma\left(B_{s}^{0}(t) \to \mu^{-}X\right) = N_{f} \left|\overline{A}_{\bar{f}}\right|^{2} \left(1 - a_{sl}^{s}\right) e^{-\Gamma_{s}t} \left\{\cosh\frac{\Delta\Gamma_{s}t}{2} - \cos(\Delta M_{s}t)\right\} / 2$$

$$\Gamma\left(\overline{B}_{s}^{0}(t) \to \mu^{+}X\right) = N_{f} \left|A_{f}\right|^{2} \left(1 + a_{sl}^{s}\right) e^{-\Gamma_{s}t} \left\{\cosh\frac{\Delta\Gamma_{s}t}{2} - \cos(\Delta M_{s}t)\right\} / 2$$

$$a_{sl}^{s} = \frac{\Gamma\left(\overline{B}_{s}(t) \to \mu^{+}X\right) - \Gamma\left(B_{s}(t) \to \mu^{-}X\right)}{\Gamma\left(\overline{B}_{s}(t) \to \mu^{+}X\right) + \Gamma\left(B_{s}(t) \to \mu^{-}X\right)}$$

- Inclusive analysis: $a_{sl} = \frac{\Gamma(\overline{B}(t) \to \mu^+ X) \Gamma(B(t) \to \mu^- X)}{\Gamma(\overline{B}(t) \to \mu^+ X) + \Gamma(B(t) \to \mu^- X)} = A_{sl}^b$
 - The asymmetry is "detectable" even without the initialstate tagging

- Since both B_d and B_s are produced at the Tevatron, $A^b{}_{sl}$ is a linear combination of $a^d{}_{sl}$ and $a^s{}_{sl}$:
 - Need to know production fractions of B_d and B_s mesons at the Tevatron
 - Measured by the CDF experiment

 $A_{sl}^{b} = (0.506 \pm 0.043)a_{sl}^{d} + (0.494 \pm 0.043)a_{sl}^{s}$

Unlike the experiments at *B* factories, the Tevatron gives a unique possibility to measure the charge asymmetry of both B_d and B_s

UNIVERSITY OF

Theoretical Predictions

•
$$a_{sl}^s = \frac{\Delta \Gamma_s}{\Delta m_s} \tan(\varphi_s)$$

UNIVERSITY OF

-

New Physics parameterization (A.Lenz&U.Nierste)

$$M_{12}^{s} \equiv M_{12}^{SM,s} \cdot \Delta_{s} \qquad \Delta_{s} \equiv |\Delta_{s}| e^{i\varphi_{s}^{\Delta}}$$

$$\Delta m_{s} = \Delta m_{s}^{SM} |\Delta_{s}| = (19.30 \pm 6.74) p s^{-1} \cdot |\Delta_{s}|$$

$$\Delta \Gamma_{s} = 2 |\Gamma_{12}^{s}| \cos(\varphi_{s}^{SM} + \varphi_{s}^{\Delta}) = (0.096 \pm 0.039) p s^{-1} \cdot \cos(\varphi_{s}^{SM} + \varphi_{s}^{\Delta})$$

$$a_{sl}^{s} = \frac{|\Gamma_{12}^{s}|}{|M_{12}^{SM,s}|} \cdot \frac{\sin(\varphi_{s}^{SM} + \varphi_{s}^{\Delta})}{|\Delta_{s}|} = (4.97 \pm 0.94) \cdot 10^{-3} \cdot \frac{\sin(\varphi_{s}^{SM} + \varphi_{s}^{\Delta})}{|\Delta_{s}|}$$

SM: $|\Delta_s| = 1$ and $\varphi_s^{\Delta} = 0$

• a_{sl}^{s} is very small in the SM: +2.10⁻⁵ • $a_{sl}^{d} = (-4.8_{-1.2}^{+1.0}) \cdot 10^{-4}$

Exclusive or Inclusive?

- Exclusive
 - Pros:
 - Access to decay-time information
 - Easier to understand backgrounds
 - Cons:
 - Much smaller statistics

- Inclusive
 - Pros:
 - Large statistics
 - Cons:
 - Backgrounds and sample composition are challenging

Inclusive Analysis

- Spectrometer : Fiber and Silicon Trackers in 2 T Solenoid
- Muons : 3 layer system & absorber in Toroidal field
- Hermetic : Excellent coverage of Tracking, Calorimeter
 and Muon Systems
 Tarreid 8

Elverpool Reversal of Magnet Polarities

x

 Polarities of DØ solenoid and toroid are reversed regularly

Trajectory of the negative

Swapping Magnet Polarity

μ

- particle becomes exactly the same as the trajectory of the positive particle with the reversed magnet polarity
- By analyzing 4 samples with different polarities (++, --, +-, -+) the difference in the reconstruction efficiency between positive and negative particles is minimized from ~3% to ~0.1%
 - The parameters δ and Δ on the following slides

• Inclusive muon sample:

- Charged particle identified as a muon
- $-1.5 < p_T < 25 \text{ GeV}$
- muon with $p_T < 4.2$ GeV must have $|p_Z| > 6.4$ GeV
- $|\eta| < 2.2$
- Distance to primary vertex: <3 mm in axial plane;
 5 mm along the beam

• Like-sign dimuon sample:

- Two muons of the same charge
- Both muons satisfy all above conditions
- Primary vertex is common for both muons
- $M(\mu\mu)$ > 2.8 GeV to suppress events with two muons from the same B decay

The central value of A^{b}_{sl} was extracted from the full data set only after the analysis method and all statistical and systematic uncertainties had been finalized

N⁺⁺, N⁻⁻ – the number of events with two like-sign dimuons

- Semileptonic B decays contribute to both like-sign dimuon asymmetry A and inclusive muon asymmetry a;
- Both A and a linearly depend on the charge asymmetry A^b_{sl}

$$a = k A_{sl}^{b} + a_{bkg}$$
$$A = K A_{sl}^{b} + A_{bkg}$$

- In addition, there are detector related background contributions A_{bkg} and a_{bkg}

Analysis outline:

- Determine the background contributions A_{bkg} and a_{bkg}
- Find the coefficients K and k
- Extract the asymmetry A^{b}_{sl}

$$a = k A_{sl}^{b} + a_{bkg}$$
$$A = K A_{sl}^{b} + A_{bkg}$$

 Asymmetry in inclusive muon sample (1.495×10⁹ muons)

$$a \equiv \frac{n^{+} - n^{-}}{n^{+} + n^{-}} = (+0.955 \pm 0.003)\%$$

• Asymmetry in like-sign dimuon sample (3.731×10⁶ events)

$$A \equiv \frac{N^{++} - N^{--}}{N^{++} + N^{--}} = (+0.564 \pm 0.053)\%$$

Fiverpool Background contribution

$$a = k A_{sl}^{b} + a_{bkg}$$
$$A = K A_{sl}^{b} + A_{bkg}$$

- Sources of background asymmetries:
 - -Background muons
 - Kaon and pion decays $K^+ \rightarrow \mu^+ v$, $\pi^+ \rightarrow \mu^+ v$ or punch-through
 - proton punch-through
 - False track associated with muon track

-Asymmetry of muon reconstruction

Detailed description of

background

$$a = k A_{sl}^{b} + a_{bkg}$$
$$A = K A_{sl}^{b} + A_{bkg}$$

Background asymmetry a_{bkg} in inclusive muon sample:

$$a_{bkg} = f_k a_k + f_\pi a_\pi + f_p a_p + (1 - f_{bkg})\delta$$

- f_{κ} , f_{π} , and f_{ρ} are the fractions of kaons, pions and protons identified as a muon in the inclusive muon sample
- $\mathbf{a}_{\mathbf{K}}$, \mathbf{a}_{π} , and $\mathbf{a}_{\mathbf{p}}$ are the charge asymmetries of kaon, pion, and proton tracks
- $-\delta$ is the charge asymmetry of muon reconstruction

$$- \mathbf{f}_{\mathsf{bkg}} = f_{\mathsf{K}} + f_{\pi} + f_{\wp}$$

Detailed description of

background

$$a = k A_{sl}^{b} + a_{bkg}$$
$$A = K A_{sl}^{b} + A_{bkg}$$

Background asymmetry A_{bkg} in like-sign dimuon sample:

$$A_{bkg} = F_k A_k + F_{\pi} A_{\pi} + F_p A_p + (2 - F_{bkg}) \Delta$$

- F_K , F_π , and F_p are the fractions of kaons, pions and protons identified as a muon in the like-sign dimuon sample
- A_{κ} , A_{π} , and A_{p} are the charge asymmetries of kaon, pion, and proton tracks
- $-\Delta$ is the charge asymmetry of muon reconstruction

$$- F_{bkg} = F_{K} + F_{\pi} + F_{p};$$

Kaon detection asymmetry

$$a_{bkg} = f_{k}a_{k} + f_{\pi}a_{\pi} + f_{p}a_{p} + (1 - f_{bkg})\delta$$
$$A_{bkg} = F_{k}A_{k} + F_{\pi}A_{\pi} + F_{p}A_{p} + (2 - F_{bkg})\Delta$$

- The largest background asymmetry comes from the charge asymmetry of kaon track identified as a muon ($a_{K'}$, A_{K})
- Interaction cross section of K^+ and K^- with the detector material is different, especially for kaons with low momentum

$$- e.g., for p(K) = 1 GeV:$$

 $\sigma(K^-d) \approx 80 \text{ mb}$ $\sigma(K^+d) \approx 33 \text{ mb}$

- It happens because the reaction $K^-N \rightarrow Y\pi$ has no K^+N analogue
- K^+ meson travels further than K^- in the material, and has more chance of decaying to a muon
- Therefore, the asymmetries $a_{K'}$, A_{K} should be positive
- All other background asymmetries are found to be about ten times less

Fiversury of Measurement of kaon asymmetry

- and negative $K \rightarrow \mu$ samples Compute asymmetry in
- the number of observed events

5000

8.98

1.06

 $M(K^{+}K^{-})$ [GeV]

 $N(K^+ \rightarrow \mu^+) - N(K^- \rightarrow \mu^-)$

1.04

1.02

$$a_{bkg} = f_{k}a_{k} + f_{\pi}a_{\pi} + f_{p}a_{p} + (1 - f_{bkg})\delta$$
$$A_{bkg} = F_{k}A_{k} + F_{\pi}A_{\pi} + F_{p}A_{p} + (2 - F_{bkg})\Delta$$

- Results from $K^{*0} \rightarrow K^+ \pi^$ and $\phi(1020) \rightarrow K^+ K^$ agree well
 - For the difference between two channels: $\chi^2/dof = 5.4 / 5$
- Combination in p_T bins is used

$$a_{bkg} = f_k a_k + f_{\pi} a_{\pi} + f_{p} a_{p} + (1 - f_{bkg})\delta$$

$$A_{bkg} = F_k A_k + F_{\pi} A_{\pi} + F_{p} A_{p} + (2 - F_{bkg})\Delta$$

- The asymmetries a_{π} , a_{p} are measured using the decays $K_{s} \rightarrow \pi^{+} \pi^{-}$ and $\Lambda \rightarrow p \pi^{-}$ respectively
- Similar measurement technique is used

	a_K	a_{π}	a_p
Data	$(+5.51 \pm 0.11)\%$	$+(0.25\pm0.10)\%$	$(+2.3 \pm 2.8)\%$

Finder Muion reconstruction asymmetry

$$a_{bkg} = f_k a_k + f_\pi a_\pi + f_p a_p + (1 - f_{bkg})\delta$$

$$A_{bkg} = F_k A_k + F_{\pi} A_{\pi} + F_p A_p + (2 - F_{bkg}) \Delta$$

- We measure the muon reconstruction asymmetry using J/ψ→µµ events
- Average asymmetries
 δ and Δ are:

 $\delta = (-0.076 \pm 0.028)\%$ $\Delta = (-0.068 \pm 0.023)\%$

• To be compared with:

 $a = (+0.955 \pm 0.003)\%$ $A = (+0.564 \pm 0.053)\%$

15

20

p_T(μ) [GeV]

25

5

10

-0.002

-0.004

asymmetry **ð**

contribution

```
a_{bkg} = f_k a_k + f_\pi a_\pi + f_p a_p + (1 - f_{bkg})\delta
```

$$A_{bkg} = F_k A_k + F_{\pi} A_{\pi} + F_p A_p + (2 - F_{bkg}) \Delta$$

	$(1-f_{bkg})$	f_K	f_{π}	f_p
MC	(59.0±0.3)%	(14.5±0.2)%	(25.7±0.3)%	(0.8±0.1)%
Data	(58.1±1.4)%	(15.5±0.2)%	(25.9±1.4)%	(0.7±0.2)%

	$f_{K}a_{K}(\%)$ or $F_{K}A_{K}(\%)$	$f_{\pi}a_{\pi}(\%)$ or $F_{\pi}A_{\pi}(\%)$	$f_{p}a_{p}$ (%) or $F_{p}A_{p}$ (%)	$(1-f_{bkg})\delta(\%)$ or $(2-F_{bkg})\Delta(\%)$	$a_{ m bkg} \ { m or} A_{ m bkg}$
Inclusive	0.854±0.018	0.095±0.027	0.012±0.022	-0.044±0.016	0.917±0.045
Dimuon	0.828±0.035	0.095±0.025	0.000±0.021	-0.108±0.037	0.815±0.070

- All uncertainties are statistical
- Notice that background contribution is similar for inclusive muon and dimuon sample: $A_{bkg} \approx a_{bkg}$

 After subtracting the background contribution from the "raw" asymmetries a and A, the remaining residual asymmetries are proportional to A^b_{sl}

All processes except $\overline{B}_q^0 \to B_q^0 \to \mu^+ X$ don't produce any charge asymmetry, but rather dilute the values of *a* and *A* by contributing in the denominator of these asymmetries $\begin{array}{c|c} \hline Process \\ \hline T_1 & b \to \mu^- X \\ \hline T_{1a} & b \to \mu^- X \text{ (non-oscillating)} \\ \hline T_{1b} & \bar{b} \to b \to \mu^- X \text{ (oscillating)} \longrightarrow A \\ \hline T_2 & b \to c \to \mu^+ X \\ \hline T_{2a} & b \to c \to \mu^+ X \text{ (non-oscillating)} \\ \hline T_{2b} & \bar{b} \to b \to c \to \mu^+ X \text{ (non-oscillating)} \\ \hline T_3 & b \to c \bar{c} q \text{ with } c \to \mu^+ X \text{ or } \bar{c} \to \mu^- X \\ \hline T_4 & \eta, \omega, \rho^0, \phi(1020), J/\psi, \psi' \to \mu^+ \mu^- \\ \hline T_5 & b \bar{b} c \bar{c} \text{ with } c \to \mu^+ X \text{ or } \bar{c} \to \mu^- X \\ \hline T_6 & c \bar{c} \text{ with } c \to \mu^+ X \text{ or } \bar{c} \to \mu^- X \end{array}$

$$k A_{sl}^{b} = a - a_{bkg}$$
$$K A_{sl}^{b} = A - A_{bkg}$$

- Coefficients k and K take into account this dilution of "raw" asymmetries a and A
- They are determined using the simulation of *b* and *c*-quark decays
 - These decays are currently measured with a good precision, and this input from simulation produces a small systematic uncertainty
- Coefficient *k* is found to be much smaller than *K*, because many more non-oscillating *b* and *c*-quark decays contribute to the asymmetry *a*:

$$k = 0.041 \pm 0.003$$

 $K = 0.342 \pm 0.023$

$$\frac{k}{K} = 0.12 \pm 0.01$$

$$k A_{sl}^b = a - a_{bkg}$$

- The contribution of A^b_{sl} in the inclusive muon asymmetry a is suppressed by k = 0.041±0.003
- The value of a is mainly determined by the background asymmetry a_{bkg}
- Raw asymmetry: a=(+0.955±0.003)%
- Background asymmetry from data: a_{bkg}=(+0.917±0.045)%

 What about p_T dependences of the background asymmetries?

Agree well!

Using all results on background and signal contribution we get two separate measurements of A^b_{sl} from inclusive and like-sign dimuon samples:

Bringing Everything Together

 $A_{sl}^{b} = (+0.94 \pm 1.12 \text{ (stat)} \pm 2.14 \text{ (syst)})\% \text{ (from inclusive)}$ $A_{sl}^{b} = (-0.736 \pm 0.266 \text{ (stat)} \pm 0.305 \text{ (syst)})\% \text{ (from dimuon)}$

Uncertainties of the first result are much larger, because of the small coefficient $k = 0.041\pm0.003$ Dominant contribution to the systematic uncertainty comes from the f_{κ} and F_{κ} fractions

UNIVERSITY OF LIVERPOOL

Background subtraction

$$k A_{sl}^{b} = a - a_{bkg}$$
$$K A_{sl}^{b} = A - A_{bkg}$$

- Many background uncertainties in the inclusive muon and in the like-sign dimuon samples are correlated
- We subtract the background using the linear combination:

$$A' \equiv A - \alpha a = (K - \alpha k)A_{sl}^b + (A_{bkg} - \alpha a_{bkg})$$

- The parameter α is selected such that the total uncertainty of A^b_{sl} is minimized
- Since $A_{bkg} \approx a_{bkg}$ and the uncertainties of these quantities are correlated, we can expect the cancellation of background uncertainties in A' for $\alpha \approx 1$
- The signal asymmetry A_{sl}^{b} does not cancel in A' for $\alpha \approx 1$ because:

- Optimal value of a is obtained by the scan of the total uncertainty of A^b_{sl} obtained from A'
- The value α = 0.959 is selected:

• From A' = A $-\alpha$ a we obtain A_{sl}^{b} :

 $A_{sl}^{b} = 0.506 \cdot a_{sl}^{d} + 0.494 \cdot a_{sl}^{s} = (-0.957 \pm 0.251 \text{ (stat)} \pm 0.146 \text{ (syst)})\%$

• To be compared with the SM prediction:

$$A_{sl}^{b}(SM) = (-0.023_{-0.006}^{+0.005})\%$$

- This result differs from the SM prediction by ${\sim}3.2~\sigma$

Statistical and systematic

uncertainties

Source	A ^b _{sl} inclusive muon	A ^b _{sl} dimuon	A ^b sl combined	
A or a (stat)	0.00066	0.00159	0.00179	
f_K or F_K (stat)	0.00222	0.00123	0.00140	
$P(\pi \to \mu)/P(K \to \mu)$	0.00234	0.00038	0.00010	ies 🗸
$P(p \to \mu)/P(K \to \mu)$	0.00301	0.00044	0.00011	ainti
A_K	0.00410	0.00076	0.00061	erta
A_{π}	0.00699	0.00086	0.00035	
A_p	0.00478	0.00054	0.00001	nt u
$\delta \text{ or } \Delta$	0.00405	0.00105	0.00077	nina
f_K or F_K (syst)	0.02137	0.00300	0.00128	οm
π, K, p multiplicity	0.00098	0.00025	0.00018	
c_b or C_b	0.00080	0.00046	0.00068	
Total statistical	0.01118	0.00266	0.00251	
Total systematic	0.02140	0.00305	0.00146	
Total	0.02415	0.00405	0.00290	

Consistency Checks

- No lifetime or flavour tagging
 - Is the asymmetry from B's?
 - Kinematical check

UNIVERSITY OF LIVERPOOL

Modify selection, split sample tests, changes raw asymmetry by up to 150% due to variations in background

0.015

Measured value of A^b_{sl} remains stable

CP-violation @ D0

Exclusive Analysis

Exclusive analysis

Data samples

- Semileptonic samples at D0
 - Bs→μφπX: 81 394±865 (5fb⁻¹)

-Bs→µK*K: 33 557±1200 (5fb⁻¹)

Good mass separation between B_s and B_d

 B_s and B_d overlap

 \geq ~85% are used for the B_s asymmetry measurement

>The remaining ~15% are coming either from Bu, Bd, Bs \rightarrow D(s)Ds or from different b or c quarks and not usable for the measurement

CP-violation @ D0

Exclusive analysis

Decay-length dependence

Exclusive Analysis

Results

B 🍣

TABLE II: Asymmetries with statistical uncertainties.

	$\mu^+\phi\pi^-$	$\mu^+ K^{*0} K^-$	Combined
$a_{fs}^s \times 10^3$	$-7.0 {\pm} 9.9$	20.3 ± 24.9	-1.7 ± 9.1
$a_{fs}^d \times 10^3$	-21.4 ± 36.3	$50.1 {\pm} 19.5$	40.5 ± 16.5
$a_{bg} \times 10^3$	$-2.2{\pm}10.6$	-0.1 ± 13.5	-3.1 ± 8.3
$A_{\rm fb} \times 10^3$	-1.8 ± 1.5	$-2.0{\pm}1.5$	-1.9 ± 1.1
$A_{\rm det} imes 10^3$	$3.2{\pm}1.5$	$3.1 {\pm} 1.5$	3.1 ± 1.1
$A_{\rm ro} imes 10^3$	-36.7 ± 1.5	-30.2 ± 1.5	-33.3 ± 1.1
$A_{\beta\gamma} \times 10^3$	1.1 ± 1.5	$0.2{\pm}1.5$	0.6 ± 1.1
$A_{q\beta} \times 10^3$	$4.3 {\pm} 1.5$	$2.0{\pm}1.5$	$3.1{\pm}1.1$

Exclusive analysis

TABLE III: Systematic uncertainties.

	$\sigma(a_{fs}^s) \times 10^3$
Kaon asymmetry set to 0	-1.24
Kaon asymmetry scaled by 2	1.30
Signal fraction -1σ	-0.76
Signal fraction $+1\sigma$	0.47
Dilution scaled by 0.9	-0.19
Dilution scaled by 1.1	0.21
μ trigger efficiency low	-0.03
μ trigger efficiency high	0.00
Decay-time dependent efficiency low	0.15
Decay-time dependent efficiency high	-0.01
VPDL resolution scaled by 0.95	0.03
VPDL resolution scaled by 1.05	-0.03
BF $B_s^0 \to D_s^- D_s^+$	0.00
BF $B_s^0 \to \mu^+ D_s^{(*)-} X$	-0.10
Relative BF $B_s^0 \to \mu^+ \nu_\mu D_s^-$ low	0.01
Relative BF $B_s^0 \to \mu^+ \nu_\mu D_s^-$ high	-0.05
B_d^0 fraction in $\mu^+ D^-$ candidates set to 93%	-0.24
Fake vertex background low	-0.13
Fake vertex background high	-0.04
Prompt combinatorial background low	0.01
Prompt combinatorial background high	-0.01
$\Delta\Gamma_s - 1\sigma$	0.00
$\Delta\Gamma_s + 1\sigma$	-0.01
$\Delta m_s - 1\sigma$	-0.01
$\Delta m_s + 1\sigma$	0.02
Total	$+1.41 \\ -1.50$

11/15/2010

Combination

• Combination of measurements of semileptonic charge asymmetries

11/15/2010

$\begin{array}{l} \textcircled{\begin{tabular}{ll versure} \hline \begin{tabular}{ll versure} \hline \\ B_s \rightarrow J/\psi \phi \mbox{ and } B_s \rightarrow D^{(*)}{}_s D^{(*)}{}_s \end{array} \end{array}$

Global Fits

2.5-σ deviation
 from SM

2.7-σ deviation
 from SM

- New $B_s \rightarrow J/\psi \phi$ results from the Tevatron and LHC experiments
- New A^b_{sl}, a^s_{sl} and a^d_{sl} results from DZero
- Model-independent measurements of semileptonic asymmetries at LHC is more challenging due to B_{s/d/u} production asymmetries
 - Initial state is not symmetric anymore due to valence quarks (*u* and *d* only)
 - This leads to asymmetric hadronisations to $B_{u,d,s} \overline{B}_{u,d,s}$ mesons
 - The asymmetries are different for B_d , B_u and B_s mesons
 - Can't measure for B_{u} and apply to $B_{d/s}$
 - Estimates from Pythia give (J.Damet&G.Ingelman):
 - ATLAS: $A_{Bd} = (0.01 \rightarrow 1.36)\%$, $A_{Bu} = (0.04 \rightarrow 1.57)\%$, $A_{Bs} = (-1.41 \rightarrow 0.06)\%$ depending on model
 - LHCb: $A_{Bd} = (0.09 \rightarrow 2.19)\%$, $A_{Bu} = (0.15 \rightarrow 1.59)\%$, $A_{Bs} = (-2.15 \rightarrow 0.08)\%$
 - Exclusive analysis with initial state tagging and additional fit parameters describing the production asymmetries is required
 - See formulae on p. 11
 - The asymmetries enter the initial state tagging as well...

Conclusions

- Measurement of A^{b}_{sl} differs from the SM by 3.2σ

$A_{sl}^{b} = (-0.957 \pm 0.251 (\text{stat}) \pm 0.146 (\text{syst}))\%$

- Almost all relevant quantities are obtained from data with minimal input from simulation
- Dominant uncertainty is statistical precision can be improved with more luminosity
- Result is consistent with other measurements of CP violation in mixing
- High potential for new measurements of A^{b}_{sl} , a^{s}_{sl} , a^{d}_{sl} and ϕ^{s}_{sl} at Tevatron
- LHC experiments should be able to start contributing soon but model-independent measurements of semileptonic asymmetries will not be easy

Extra Slides

• Explains large CPV in Bs mixing

UNIVERSITY OF LIVERPOOL

• Explains the K π puzzle in B_u/B_d: $\Delta A = A_{\kappa + \pi^0} - A_{\kappa + \pi^-} \sim 15\%$

Baryon asymmetry due to the new CKM⁴ matrix could gain ~10⁺¹⁵!

 $B_s^0 - B_s^0$ Mixing & CP parameters

Flavor eigenstates propagate according to the Schrödinger Eq.

If $q/p=1 \rightarrow No CP$ violation

Phase
$$\varphi_s^{SM} = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right) \sim 0.004$$

New Physics effects $\varphi_s^{SM} \to \varphi_s^{SM} + \varphi_s^{\Delta}$

$$N^{\pm\pm} \propto F_{SS}(1\pm A_{S})(1\pm \Delta)^{2} + \sum_{x=K,\pi,p} F_{SL}^{x}(1\pm A_{x})(1\pm a_{S})(1\pm \Delta) + \sum_{x,y=K,\pi,p} \sum_{y\geq x} F_{LL}^{xy}(1\pm A_{x})(1\pm A_{y})$$

$$A = \frac{N^{++} - N^{--}}{N^{++} + N^{--}} = F_{SS}A_S + F_{SL}a_S + (2 - F_{bkg})\Delta + F_KA_K + F_\pi A_\pi + F_p A_p$$

$$F_{K} = F_{SL}^{K} + F_{LL}^{K\pi} + F_{LL}^{Kp} + 2F_{LL}^{KK}$$
$$F_{bkg} = F_{K} + F_{\pi} + F_{p} = F_{SL} + 2F_{LL}$$
$$F_{SS} + F_{bkg} - F_{LL} = 1$$

Sample Composition

TABLE XI: Heavy quark decays contributing to the inclusive muon and like-sign dimuon samples. Abbreviation "nos" stands for "non-oscillating," and "osc" for "oscillating." All weights are computed using the MC simulation.

	Process	Weight
T_1	$b \to \mu^- X$	$w_1 \equiv 1.$
T_{1a}	$\underline{b} \to \mu^- X \text{ (nos)}$	$w_{1a} = (1 - \chi_0) w_1$
T_{1b}	$\overline{b} \to b \to \mu^- X \text{ (osc)}$	$w_{1b} = \chi_0 w_1$
T_2	$b \to c \to \mu^+ X$	$w_2 = 0.113 \pm 0.010$
T_{2a}	$b \to c \to \mu^+ X \pmod{100}$	$w_{2a} = (1 - \chi_0)w_2$
T_{2b}	$\bar{b} \to b \to c \to \mu^+ X \text{ (osc)}$	$w_{2b} = \chi_0 w_2$
T_3	$b \to c\bar{c}q$ with $c \to \mu^+ X$ or $\bar{c} \to \mu^- X$	$w_3 = 0.062 \pm 0.006$
T_4	$\eta, \omega, \rho^0, \phi(1020), J/\psi, \psi' \to \mu^+ \mu^-$	$w_4 = 0.021 \pm 0.001$
T_5	$b\bar{b}c\bar{c}$ with $c \to \mu^+ X$ or $\bar{c} \to \mu^- X$	$w_5 = 0.013 \pm 0.002$
T_6	$c\bar{c}$ with $c \to \mu^+ X$ or $\bar{c} \to \mu^- X$	$w_6 = 0.660 \pm 0.077$