How to detect the Diffuse Supernova Neutrino Background?

Seminar talk DESY Zeuthen 9 Dec 2022 Michael Wurm (Mainz)

KPC

GP

Observation of Supernova neutrinos

Outline of this talk

- DSNB model predictions
- Current best limits
- Observation in the next decade?
- Potential of future detectors

Kpc

10

DSNB Models: Basic Ingredients

Supernova Neutrino Spectrum

- -- depending on progenitor mass
- -- red-shifted by cosmic expansion

Star Formation History

i.e. the red-shift dependent Star Formation Rate (SFR)

• astronomical observation of star formation regions by photons (UV \rightarrow radio)

• relatively well constrained up to red-shifts $z \approx 1-2 \rightarrow \text{most}$ relevant for DSNB

Initial Mass Function

i.e. distribution of progenitor star masses

- stars that end in a ccSN: typically only 8 M_{solar} and higher
 → small fraction (~10%)
- DSNB modeling: commonly used (broken) Salpeter parametrization

progenitor mass influences

- final state: neutron star, black hole
- temperature of proto-neutron star
 → SN neutrino spectrum

Heger

et al. (2003

Supernova Neutrino Emission in a Nut Shell

- neutrino emission from core-collapse
 Supernovae comes in three batches
 - neutronization: $p + e^- \rightarrow n + v_e$
 - accretion: $v_e \& \bar{v}_e$
 - PNS cooling:
- $\nu \overline{\nu}$ -pair production (all flavors!)
- Proto Neutron Star (PNS) cooling is the dominant contribution
- Total v luminosity: ~99% of gravitational energy released in Fe core collapse
- event numbers expected for Super-K:
 - $\sim 10^4$ for center of Milky Way (10 kpc)
 - ∘ ~1 for Andromeda (1 Mpc)

Supernova Neutrino Spectrum

standard parametrization (Keil, Raffelt, Janka) $=\frac{(1+\beta_{\nu})^{1+\beta_{\nu}}L_{\nu}}{\Gamma(1+\beta_{\nu})\langle E_{\nu}\rangle^{2}}\left(\frac{1}{\zeta}\right)$ dN_{ν} E_{ν} $e^{-(1+\beta_{\nu})E_{\nu}/\langle E_{\nu}\rangle}$ $\mathrm{d}E_{\nu}$ 0.1 w=0.8 $<\varepsilon_{v}>= 12 \text{ MeV}$ 0.08 0.06 <ε_v>=16 MeV npL(ε_v) $<\varepsilon_v>=20 \text{ MeV}$ 0.04 <ε_ν>=24 MeV 0.02 (a) 0 10 20 30 50 60 70 40 80 ε_v (MeV)

- thermal Fermi-Dirac spectrum (T ~4-5 MeV) with
- pinching β_v to take into account thickness of neutrino sphere

Michael Wurm

New: Mass-dependent Neutrino Spectra

- figures show time to explosion/BH formation, total energy, mean neutrino energy as a function of Zero-Age Main Sequence (ZAMS) mass
- red: successful SNe, grey-blue: failed SNe with dependence on EoS of neutron star

Impact of Cosmological Red-Shift

- DSNB spectrum at Earth is composite of SN spectra emitted from different red-shift shells
- only SNe at red-shifts <2 contribute to signal region above 10 MeV (see later)

Range of predictions

uncertainties shown here:

- fraction of failed SN
- mass limit of neutron stars
- spectral shape of black-hole forming SN
- normalization of Star Formation Rate

- DSNB flux predictions feature large intrinsic uncertainties
- predictions by many different groups
 - ightarrow no substantial differences on flux/spectral shape

Range of predictions and upper limit

effect of upper limit by Super-Kamiokande

- DSNB flux predictions feature large intrinsic uncertainties
- predictions by many different groups
 - \rightarrow no substantial differences on flux/spectral shape
- upper limit from experiment: part of parameter space already ruled out!

Why is the DSNB interesting?

- discovery of the only "permanent" SN neutrino signal
- ightarrow signal normalization
 - redshift-dependent SN rate
 - fraction of hidden/failed SNe

\rightarrow spectral shape

- large variability in PNS temperatures expected
 → average SN neutrino spectrum
- astrophysical parameters, e.g. neutron star equation of state

Detectors for DSNB detection

main requirements:
large detection mass
ultra-low background

JUNO

Super-Kamiokande

Michael Wurm

14

DUNE

Detecting the DSNB antineutrino component

- DSNB flux: ~10² /cm²s
- equipartition between v flavors
- best possibility for detection in water and liquid scintillator (LS)
 - $\bar{\nu}_e$ via **inverse beta decay** on free protons (H)
- expected event rate:
 - 1-2 events per 10 kt·yrs

Current experimental results

Example: Super-K background spectra

Important improvement: Neutron Tag

→ n-detection inherent to liquid scintillators but hard to achieve in pure water

Neutron Tag in current SK-IV

Recent publication on latest SK-IV data with long acquisition window after trigger that results in ~20% delayed neutron tag efficiency

← events with 0/2+ detected neutrons background levels as in SK I-III analyses

 ← events with 1 detected neutrons single background levels suppressed but also low signal efficiency

Side note: both data samples prefer a small non-zero DSNB contribution.

DSNB

How to enhance delayed neutron tagging? JG

Super-Kamiokande+Gadolinium

- add low concentration of gadolinium (10⁻³)
 anhanced neutron too by common concerdent
- enhanced neutron tag by gamma cascade
- (τ~30µs, 4-5 gammas with $\Sigma E_{\gamma} \approx 8 MeV$)
- detection efficiency: 65-80%
- \rightarrow running since fall 2020!

JUNO

- liquid scintillator: high light yield & low detection threshold
- Iarge signal by n capture on H
- detection efficiency close to 100%
- \rightarrow will start in 2023

→ successfully removes all single-event backgrounds – **but**: there are correlated BGs ...

Michael Wurm (Mainz)

Backgrounds mimicking IBDs

In 2011, KamLAND published results from an extraterrestrial \bar{v}_e search in 10-30 MeV range:

Atmospheric neutrino NC background

caused by NC reactions of GeV atmospheric neutrinos on carbon/oxygen

JGU

Atmospheric NC background in SK-Gd

Michael Wurm (Mainz)

Discrimination based on light patterns

distinguishing charge and timing patterns with Convolutional Neural Network (CNN)

 \rightarrow single rings for DSNB, more complex structures for atmospheric NC events

DSNB

SK-Gd expectation after CNN

Maksimovic, Nieslony, Wurm (2021)

- CNN performance:
 - signal efficiency: 96%
 - residual background: 2%
- resulting S:B ratio of 4:1 in the energy range of interest (12-30) MeV
- residual background by invisible muons (Michel electrons from low-E atm. v_{μ} 's)

DSNB search in JUNO

25

30

Pulse Shape Discrimination (PSD) in LS

Pulse Shapes of Gammas and Neutrons

- example shown here for 11 MeV neutrons vs. 4 MeV gammas
- efficiency rises with energy/number of photons detected
- JUNO is a high light yield experiment!
 → expect ~1300 pe/MeV

- in liquid scintillators, pulse shapes (and light yield) of highly ionizing particles (n,p,α's) differs from light particles (e,γ's)
- can be exploited for discrimination,
 e.g. by tail-to-total ratio of time-of-flight corrected pulses

Michael Wurm (Mainz)

DSNB expectation in JUNO after PSD

JGU

2015: based on tail-to-total pulse shape discrimination and old LENA studies, expected performance for JUNO was

- DSNB signal efficiency: 50%
- NC background residual: 1.1%

 expected event rate for JUNO:
 signal: 2.0 IBD/yr (large model uncertainty)
 background: 0.8 /yr
 i.e. roughly comparable

to SK-Gd expectation

DSNB signal and background before/after PSD

Michael Wurm (Mainz)

First observation of DSNB within 10 years? JG

SK-Gd started data taking in 2020, JUNO will follow soon \rightarrow projected DSNB sensitivity?

- after 10 years, sensitivity of individual experiments at 3σ level
- combined sensitivity will reach 5σ level for a positive DSNB detection
- many caveats: DSNB (and BG) rate uncertainty, systematic effects
- but as well synergies: complementary measurements of atm. NC BG in water/scintillator will improve understanding of this background

Updated JUNO study with better PSD

Improved knowledge of pulse shapes

- state-of-the art modeling of NC final states and LS fluorescence parameters
- improved PSD techniques (radius-dep. Tail-to-Total, machine learning TMVA) promises excellent BG suppression
- atm.NC reactions with ¹¹C in final state are harder to discriminate by PSD but can be tagged based on delayed β^+ -decay

JUNO (2022

Michael Wurm (Mainz)

Future detection strategies

Next generation of experiments can discover the DSNB signal → how do we get to spectroscopic measurements?

→ huge water-Cherenkov detectors, i.e. Hyper-Kamiokande

→ advanced scintillator detectors with hybrid signal readout, i.e. Theia

Prospects for Hyper-Kamiokande

- IOx larger volume: statistics will drastically increase!
- \rightarrow detection becomes possible without addition of gadolinium
- but: full potential is reached only if gadolinium is added (this is no longer the standard scenario)

Michael Wurm

```
DSNB
```

Hybrid Cherenkov-scintillation detectors

→ Cherenkov light is particularly useful for reconstruction of direction and (multiple) tracks

- → Cherenkov photons are produced in liquid scintillators (~5%)
- → the majority is scattered or absorbed before reaching PMTs

To make use of it:

- \rightarrow reduce scattering/absorption
- → separation of Cherenkov and scintillation photons

JGU

Water-based Liquid Scintillators (WbLS)

WbLS composition

- organic LS mycels (solvent+fluor)
- surfactant
- water
- → properties depend on relative fractions:
- Reduced light yield
- Increased transparency
- Comparable timing

JGU

→ how to resolve the Cherenkov/scintillation signals?

Timing

"instantaneous chertons"
vs. delayed "scintons"
→ ≤ 1 nanosec resolution

UV/blue scintillation vs. blue/green Cherenkov → wavelength-sensitivity

increased PMT hit density under Cherenkov angle → sufficient granularity

Michael Wurm (Mainz)

Scintons

chertons

\rightarrow how to resolve the Cherenkov/scintillation signals?

Timing

"instantaneous chertons" vs. delayed "scintons" $\rightarrow \leq 1$ nanosec resolution

Spectrum

UV/blue scintillation vs. blue/green Cherenkov \rightarrow wavelength-sensitivity

Angular distribution

increased PMT hit density under Cherenkov angle → sufficient granularity

90°

scint

Scintons

chertons

e.g.

180° angle

 \rightarrow how to resolve the Cherenkov/scintillation signals?

Timing

"instantaneous chertons"
vs. delayed "scintons"
→ ≤ 1 nanosec resolution

LAPPDs: ~60ps timing

Large Area Picosecond Photon Detectors

- Area: 20-by-20 cm²
- Amplification of p.e. by two MCP layers
- Flat geometry: ultrafast timing ~65ps
- Strip readout: spatial resolution ~1cm
- Commercial production by Incom, Ltd.

Michael Wurm (Mainz)

Scintons

thertons

Dichroic filters

Reflective Scintons Tubing hertons Phys. Rev. D 101, 072002 (2020) Spectrum UV/blue scintillation vs. **Dichroicons** (Josh Klein's group @ U Penn) blue/green Cherenkov Dichroic two PMTs in sequence \rightarrow wavelength-sensitivity shortpass filters separated by a Winston cone assembled from shortpass filters (<460nm) front PMT collects Chertons, scint back PMT scintons Dichroic €0.002 longpass and the second secon filter -0.002 **Red sensitive** photodetector -0.004 -0.006 Aulti-PE scintillation Standard 600 X (nm) -0.008ight at the back Reflector 300 400 500 Cherenkov -0.01 light at

-0.012

-0.014

-0.016

600 700

aperture

800 900

Michael Wurm (Mainz)

Blue sensitive

photodetector

-R1408

-R2257

1000 1100 1200 1300

sample pulse

1400 1500 160 Sample (0.1 ns)

Chertons and Scintons with CHESS

[arXiv:2006.00173]

Setup at UC Berkeley (Gabriel Orebi Gann)

-0.6

fast timing

information

Results for timing distributions in different rings:

LAB + 2g/I PPO

WbLS (5% organic)

\rightarrow ring and timing pattern clearly visible!

 \rightarrow WbLS is found to be faster than pure LAB LS

WbLS	1%	5%	10%
τ_1 [ns]	2.25 ± 0.15	2.35 ± 0.11	2.70 ± 0.16
τ_2 [ns]	15.1 ± 7.5	23.2 ± 3.3	27.1 ± 4.2
R_1	0.96 ± 0.01	0.94 ± 0.01	0.94 ± 0.01

Michael Wurm (Mainz)

A large WbLS detector? \rightarrow THEIA100

Detector Specifications

- Detector mass: ca. 100 kt
- Dimensions: 50-by-50 m? (WbLS transparency)
- Photosensors: mix of conventional PMTs (light collection) and LAPPDs (timing)
- Location: deep lab with neutrino beam (Homestake, Pyhäsalmi, Swedish sites?)

WbLS: Impact on MeV neutrino detection JG

[arXiv:2007.14999]

Water Cherenkov

- High transparency
 → enhanced light collection
- Directionality from cone reco
- Particle ID from ring counting
- Enhanced metal loading

Combined: Particle ID based on **Cherenkov/scintillation (C/S) ratio** (p, α below **Č** threshold)

Organic scintillator mycels

- Low (sub-Cherenkov) threshold
- Increased light yield
- Enhanced vertex reconstruction
- Particle ID by pulse shape
- Enhanced cleanliness

DSNB/background discrimination in WbLS JG

Atmospheric NC events remain as the most important background.

Several handles for BG discrimination:

- ring counting
- Cherenkov/Scintillation (C/S) ratio
- Tagging of delayed decays

Result of MC study using realistic BG model and basic event reco			
\rightarrow signal efficiency:	~ 80%		
→ residual background:	~ 1%		

Collecting event statistics for spectroscopy JG

How long do we have to wait to collect $10 \rightarrow 100 \rightarrow 1000$ events?

DSNB

Conclusions

Diffuse Supernova Neutrino Background depends on from

- red-shift dependent star-formation/Supernova rate
- average spectrum of Supernova neutrinos (fraction of failed SNe, EoS of neutron stars etc.)
- → complementary information to next galactic Supernova!

Upcoming generation of DSNB experiments

- SK-Gd and JUNO can both hope to collect 2 IBDs/yr with relatively low background levels (S:B > 2:1)
- → DSNB discovery expected after about 10 years

Future DSNB experiments

- HK and especially HK-Gd would mean a huge increase in sensitity and event statistics
- new hybrid detector concepts like Theia will further improve detection/BG suppression capabilities
- → spectroscopy of DSNB is within reach

Backup Slides

Table of Event Rates (all techniques)

Wei, Wang, Chen, arXiv:1607.01671

Table 2: Summary of the numbers of backgrounds and SRN events at neutrino energies of 10.8-30.8 MeV with an exposure of 20 kton-year of water, Gd-doped water, a typical liquid scintillator, and a slow liquid scintillator (LAB) at Jinping.

20 kton-year	Water ^a	Gd-w ^a	LS	Slow LS
Atmos. $\bar{\nu}_e$	0.040	0.21	0.28	0.26
Atmos. $\bar{\nu}_{\mu}/\nu_{\mu}$ CC	0.33	1.8	3.6	0.025
Atmos. NC	0.095	0.49	62	0.35
Total backgrounds	0.47	2.5	66	0.64
Signal ^b	0.54	2.8	4.2	4.1
Signal efficiency	13%	70%	92%	90%
S/B	1.1	1.1	0.064	6.4

^a with neutron tagging.

^b HBD model; water and Gd-w results corrected by a factor of ~0.9 due to differences in the fractions of free protons in water and LAB.

Different flavors of atm. NC background

There is a long list of final states with single neutrons ...

Reaction channel	Branching ratio
(1) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + {\rm n} + {}^{11}{\rm C}$	38.8%
(2) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + {\rm p} + {\rm n} + {}^{10}{\rm B}$	20.4%
(3) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 2{\rm p} + {\rm n} + {}^{9}{\rm Be}$	15.9%
(4) $\nu_{\mathbf{x}} + {}^{12}\mathrm{C} \rightarrow \nu_{\mathbf{x}} + \mathrm{p} + \mathrm{d} + \mathrm{n} + {}^{8}\mathrm{Be}$	7.1%
(5) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + \alpha + p + n + {}^{6}{\rm Li}$	6.6%
(6) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 2{\rm p} + {\rm d} + {\rm n} + {}^{7}{\rm Li}$	1.3%
(7) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 3{\rm p} + 2{\rm n} + {}^{7}{\rm Li}$	1.2%
(8) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + {\rm d} + {\rm n} + {}^{9}{\rm B}$	1.2%
(9) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 2{\rm p} + {\rm t} + {\rm n} + {}^{6}{\rm Li}$	1.1%
(10) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + \alpha + n + {}^{7}{\rm Be}$	1.1%
(11) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 3{\rm p} + {\rm n} + {}^{8}{\rm Li}$	1.1%
other reaction channels	4.2%

Total rate found in KamLAND: **3.6±1.0 kt⁻¹yr⁻¹**

 \rightarrow none of the final state particles will produce Cherenkov light! (except γ 's)

DSNB study performed for Jinping

Wei, Wang, Chen, arXiv:1607.01671

\rightarrow discrimination of e⁺ and NC-prompt seems effortless above 10 MeV

DSNB in LSCDs

DSNB event spectrum in sLS

Wei, Wang, Chen, arXiv:1607.01671

Expected energy spectrum: $\langle E_{\nu} \rangle = 18 \text{MeV}$

Event rates in observation window $E_{\nu} \in [10.8; 30.8]$ MeV

20 kt∙yr	# [11-31 MeV]
atm. $\bar{\nu}_e$	0.26
atm. ν_{μ}	0.025
atm. NC	0.35
total BG	0.64
signal	4.1
efficiency	90%
S/B	6.4

\rightarrow comes close to **background-free** observation (excl. terrestrial $\bar{\nu}_e$ sources)

LSCDs vs. other techniques

Wei, Wang, Chen, arXiv:1607.01671 JUNO Yellow Book, arXiv:1507.0561

Prospects for WbLS in THEIA

Reference design

- Fiducial mass: 50-100 kt
- WbLS or oil-diluted LS
- up to 80% photo-coverage (90% PMTS / 10% LAPPDs)
- Isotope loading (Gd, Li, Te, Xe)

Reduced design

- fits into a free DUNE cavern
- Fiducial mass: ~20 kt
- 40% photo-coverage w/ possible LAPPD upgrade

Staged Approach

- Phase 1 Long-baseline neutrinos (LBNF) with "thin" WbLS (1%)
- Phase 2 Low-energy neutrino observation with "oily" LS
- Phase 3 multi-ton scale $0\nu\beta\beta$ search with loaded LS in suspended vessel —

THEIA proto-collaboration: ~30 Pl's from 5 countries (US,DE,UK,CA,FI)

Physics Goals \rightarrow arXiv:1409.5864

- LBL: CP violation
- Proton decay ($K^+\nu/\pi^0e^+$)
- Supernova neutrinos pointing (Δθ~1°)
- Diffuse SN neutrinos atm. NC BG reduction
- Solar neutrinos CNO, Li loading \rightarrow CC
- Geoneutrinos
- 0νββ on <10meV scale

Light propagation in organic scintillators

How to improve the (relative) Cherenkov photoelectron yield?

\rightarrow reduce fluor concentration

- impacts scintillation yield
- slows down scintillation (good! → see next slide)

→ reduce Rayleigh scattering

new transparent solvent,
 e.g. LAB (~20m)

and/or

dilution of solvent:
 Water-based scintillators
 Oil-diluted LS (LSND ...)

JG U

Signature for background tagging:

 \rightarrow three-fold coincidence of prompt, neutron and delayed decay signal

Reaction channel $\nu_x + {}^{16}\mathrm{O} \longrightarrow \nu_x +$				$ ightarrow u_x +$	ratio in $\%$			
(1)	n			+	$^{15}\mathrm{O}$	45.9	taggable	$\rightarrow \beta^+$: Q = 2.8 MeV
(2)	n	+	р	+	^{14}N	19.7	stable	τ = 2.2min
(3)	n	+	2p	+	$^{13}\mathrm{C}$	14.7	stable	
(4)	n	+	р	+ d +	$^{12}\mathrm{C}$	9.1	stable	
(5)	n	+	р	$+ d + \alpha +$	⁸ Be	2.0	too fast	
(6)	n	+	3p	+	$^{12}\mathrm{B}$	1.8	taggable	$\rightarrow \beta^{-}$: Q = 13.4 MeV
(7)	n			$+lpha+{}^{3}\mathrm{He}$ $+$	⁸ Be	1.6	too fast	τ = 20 msec
(8)	n	+	р	+lpha+	$^{10}\mathrm{B}$	1.4	stable	
(9)	n	+	2p	+lpha+	$^{9}\mathrm{Be}$	1.2	stable	

→ tagging of delayed decays provides 48% AtmBG rejection efficiency

Fast light detectors: LAPPDs

For fast scintillators (e.g. WbLS), sub-ns time resolution will be crucial

Large-Area Picosecond Photo-Detectors:

- flat, large area (20cm x 20cm) detectors
- standard photocathode, MCP-based amplification
- time resolution: ~60 ps
- spatial resolution: <1cm</p>
- Manufactured by US company, Incom Inc.

Schematic of LAPPD

WbLS development path \rightarrow ANNIE

ANNIE: Accelerator Neutrino Neutron Interaction Experiment

- Fermilab-based R&D facility for Water-Cherenkov(+Gd)/scintillator detection
- Physics motiviation: measurement of nuclear final states from neutrino interactions (NuMi-beam) in water: production and multiplicity of final-state neutrons

- **Phase I** an engineering run of the detector and measurement of beam correlated neutron backgrounds, was completed in summer of 2017
- **Phase II** the full physics and R&D run, starts construction this summer with the data taking to planned start in Fall 2018
- **Phase III** (planned) R&D run with WbLS fill or separated target vessel (ton-scale)

Michael Wurm (Mainz)

New Detection Techniques

AtmNC events with high C/S ratio

JGU

Two event populations contributing:

(1) Oxygen de-excitation gammas

- atmospheric neutrino removes 1s_{1/2} neutron
- high-energy de-excitation γ's

(2) High-energy neutrons

- depositing 15-50 MeV in WbLS
- creating secondary particles: e,γ

e.g. two or more

- ¹⁶O(n,n)¹⁶O* → 6.13 MeV
- ¹⁶O(n,2n)¹⁵O* → 6.18 MeV
- ¹⁶O(n, np)¹⁵N* \rightarrow 6.32 MeV

→ these events form a potential background for water+Gd detection, too