Contribution submission to the conference SMuK 2023

Towards spin-polarised electron beams from a Laser Plasma Accelerator — •FELIX STEHR^{1,2}, SIMON BOHLEN¹, LOUIS HELARY¹, JENNIFER POPP^{1,2}, JENNY LIST¹, GUDRID MOORTGAT-PICK^{2,1}, JENS OSTERHOFF¹, and KRISTJAN PÕDER¹ — ¹Deutsches Electronen-Synchrotron DESY, Hamburg — ²University of Hamburg

Polarised beams are indispensable for many experiments in particle, atomic and nuclear physics where spin-dependent processes are to be studied. Unlike RF accelerators, the accelerating fields in Laser-Plasma-Accelerators (LPA) are not limited by material breakdown. LPAs can create beams of tens to hundreds of MeV in only a millimeter, making them a promising alternative to conventional accelerators.

The LEAP (Laser Electron Acceleration with Polarisation) project at DESY aims to generate and measure spin-polarised electron beams from a compact LPA for the first time. The generation of spin-polarised beams from an LPA relies on a pre-polarised plasma source, where hydrogen halide molecules are dissociated by a circularly polarised UV laser pulse. The dissociation of an HCl gas target requires a laser pulse with a wavelength of about 200 nm, which has to be synchronised with the LPA driver laser, as the depolarisation of the electrons in the gas occurs in the sub-nanosecond range. Therefore, the UV pulse will be generated by cascaded second harmonic generation of the fundamental 800 nm LPA driver pulse. This contribution will discuss the physics of spin-polarised LPA, the experimental progress of preparing a prepolarised plasma source for LPA and will provide an overview of the polarisation measurement within the LEAP project.

Part:	АКВР
Туре:	Vortrag;Talk
Topic:	New Accelerator Concepts
Email:	felix.paul.georg.stehr@desy.de