Contribution submission to the conference SMuK 2023

Large Energy Depletion of a Beam Driver in a Plasma-Accelerator - •Felipe $Peña^{1,2}$. Wakefield CARL Α. Beinortaite 1,4 , LINDSTRØM^{1,3}, Jonas Judita Björklund SVENSSON¹, LEWIS BOULTON^{1,5,6}, SEVERIN DIEDERICHS^{1,2}, JAMES M. GARLAND¹, PAU GONZÁLEZ CAMINAL^{1,2}, GREGOR LOISCH^{1,2}, SARAH SCHRÖDER¹, MAXENCE THÉVENET¹, STEPHAN WESCH¹, JONATHAN WOOD¹, JENS OSTERHOFF¹, and Richard D'Arcy¹ — ¹Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany — 2 Universität Hamburg, Germany — 3 University of Oslo, Norway — 4 University College London, UK — 5 SUPA, University of Strathclyde, Glasgow, UK — ⁶The Cockcroft Institute, Daresbury, UK

Beam-driven plasma-wakefield acceleration has the potential to reduce the size and construction cost of large-scale accelerator facilities, by providing accelerating fields orders of magnitude greater than that of conventional accelerating structures. Affordable running costs require demonstration of high energy-transfer efficiency from the wall-plug to the accelerated bunch. For this, drive bunches must be efficiently produced, strong decelerating fields must be sustained for the drive bunches until their energy is depleted, and the resulting accelerating fields must be strongly beam loaded by the trailing bunches. Here we address the second of these points, showing measurements using a 500 MeV drive bunch where $(50\pm7)\%$ of its total energy is deposited into a 20 cm long plasma. This level of energy-transfer efficiency demonstrates that plasma accelerators hold the potential to become competitive with conventional accelerators.

Part:	АКВР
Туре:	Vortrag;Talk
Topic:	New Accelerator Concepts
Email:	felipe.pena@desy.de