Contribution submission to the conference SMuK 2023

Plasma Density Evolution Background to the Ion-motion Recovery in a Beam-driven Plasma-wakefield Accelerator — •JUDITA BEINORTAITE^{1,2}, JONAS BJÖRKLUND SVENSSON¹, JAMES CHAPPELL³, MATTHEW JAMES GARLAND¹, HARRY JONES¹, CARL A. LINDSTRØM¹, GREGOR LOISCH¹, FELIPE PEÑA^{1,4}, SARAH SCHRÖDER¹, STEPHAN WESCH¹, MATTHEW WING², JENS OSTERHOFF¹, and RICHARD D'ARCY¹ — ¹Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany — ²University College London, London, UK — ³University of Oxford, Oxford, UK — ⁴Universität Hamburg, Hamburg, Germany

Beam-driven plasma-wakefield acceleration is a promising avenue for the future design of compact linear accelerators with applications in high-energy physics and photon science. Meeting the luminosity and brilliance demands of current users requires the delivery of thousands of bunches per second: many orders of magnitude beyond the current state-of-the-art of plasma-wakefield accelerators, which typically operate at the Hz-level. As recently explored at FLASHForward, a fundamental limitation for the highest repetition rate is the long-term motion of ions that follows the dissipation of the driven wakefield (R. D*Arcy, et al. Nature 603, 58,62 (2022)). The duration of this ion motion could vary with the mass of the plasma ions, thus significantly decreasing in lighter gas species. To observe this, the understanding of the background processes, such as microsecond-level plasma density evolution of different gases in a capillary, is needed. Here we present the first steps of exploring this plasma evolution.

Part:	АКВР
Туре:	Vortrag;Talk
Topic:	New Accelerator Concepts
Email:	judita.beinortaite@desy.de