Ultra-Peripheral Collisions at RHIC

Joakim Nystrand Department of Phyiscs and Technology, University of Bergen, Norway

- Brief Introduction to "Ultra-Peripheral Collisions".
- Experimental results from RHIC (and Tevatron).
- Conclusions and outlook for the LHC.

Heavy-Ion Collisions at RHIC and the LHC

Ultra-Relativistic Heavy-ion collisions

- at the Brookhaven AGS (14 A GeV) and CERN SPS (200 A GeV) since 1986;
- fixed target experiments.

Heavy-ion colliders

- RHIC since 2000 (Au+Au at 100+100 A GeV);
- LHC, expected in 2008(?) (Pb+Pb at 2.75+2.75 A TeV).

Ultra-Peripheral Collisions

- The goal is to utilize the strong electromagnetic fields in interactions without overlap, $n_{\gamma} \propto Z^2$.
- b > or >> 2R
- Photonuclear and photon-proton interactions at unprecedented energies (at the LHC)!

Equivalent photon luminosity

Electromagnetic Interactions in p+p and A+A vs. in e+p(A)

- Directional symmetry. Both beams (nuclei) and can act as photon emitter or target; away from y=0, the different photon emitter/ target combinations give different contributions.
- Strong fields lead to high probability for emission of multiple photons.
- The photoproduction signal must be separated from the hadroproduction background (multiplicity, rapidity gaps, ...).
- Results so far on exclusive processes, e.g. $\gamma\gamma \rightarrow e^+e^-$ and $\gamma A \rightarrow VA$.

Particle Production and Coulomb break-up

- Very high probability for emitting one soft photon, which can excite the target to a Giant Dipole Resonance.
- P \approx 35-50 % in grazing Au+Au/Pb+Pb collisions at RHIC-LHC.
- Excitation to GDR leads to emission of neutrons which can be detected in Zero Degree Calorimeters (ZDC). ⇒ Useful as trigger

VS.

 $\sigma = 370 \text{ mb}$

 $\sigma = 30 \text{ mb}$

Ultra-Peripheral Collisions at RHIC

Experimental UPC results from RHIC so far:

- 1) ρ^0 -production, Au+Au \rightarrow Au+Au+ ρ^0 STAR Collaboration (C. Adler et al. PRL 89(2002)272302).
- 2) e⁺e⁻-pair production, STAR Collaboration, (J.Adams et al., Phys.Rev. C70(2004)031902).
- 3) J/Ψ and high-mass e⁺e⁻-pair production PHENIX Collaboration, nucl-ex/0601001.

Ultra-Peripheral Collisions in STAR

Two UPC trigger classes:

- 1) Topology trigger: Based on hits in Central Trigger Barrel, with a "topology" cut to remove cosmic rays.
- 2) Min. Bias trigger: At least one neutron in each ZDC (Coulomb break-up). Low mult. in Central Trigger Barrel.

$Au+Au \rightarrow Au+Au+\rho^0$

STAR Collaboration (C. Adler et al. PRL 89(2002)272302)

Cross sections in agreement with Glauber model:

 $\sigma(Au+Au \rightarrow Au+Au+\rho^0)$ [mb]

STAR

Theory

Exclusive: 460±220±110

490*

* Frankfurt, Strikman, Zhalov Phys. Lett. B 537 (2002) 51.

background, like-sign pairs

Signal+background, unlike-sign pairs 21 – 25 May 2007 See also S.R. Klein, J. Nystrand PRC 60 (1999) 014903; Gonçalves, Machado, J. Phys. G 32 (2006) 295.

EDS07, DESY, Hamburg

Joakim Nystrand

Coherent vs. Incoherent ρ^0 Production

Publised: $\sqrt{s} = 130 \text{ GeV}$, low luminosity, $\approx 700 \text{ }\rho^0$

Preliminary: $\sqrt{s} = 200 \text{ GeV}$, Run-II intermediate luminosity, $\approx 16,000 \text{ } \rho^0$ (coherent and incoherent)

$Au+Au \rightarrow Au+Au+\rho^0$

 ρ^0 production cross sections measured by the STAR Collaboration 0n – no neutron in ZDC; 1n – one neutron in ZDC; Xn – \geq 1 neutron in ZDC

	STAR	STAR
	\sqrt{s} =200GeV, mb	\sqrt{s} =130GeV, mb
σ_{xnxn}	30.26±1.1±6.35	26.2±1.8±5.8
σ_{0nxn}	108.74±9.08±22.83	90±55±20
σ_{1n1n}	1.63±0.18±0.34	2.5±0.4±0.6
σ_{0n0n}	370.19±33.26±77.74	285±145±70
$\sigma_{ m total}$	509.2±34.5±106.9	410±190±100

Y. Gorbunov, Workshop on Photoproduction at Collider Energies: From RHIC and HERA to the LHC, ECT* Trento, 15 – 19 January, 2007, http://www.ect.it/.

Interference in ρ^0 Production

The production amplitudes will interfer (at y=0 $|A_1|=|A_2|$), $|A_1+A_2|^2 = 2 |A_1|^2 [1 - \cos(\mathbf{p} \cdot \mathbf{b})]$

The interference is destructive because of the (–) parity of the photon.

Fit the observed t distribution (with $t=p_T^2$) to a function

$$\frac{dN}{dt} = Ae^{-kt} (1 + C[R(t) - 1])$$

 $C = 0 \leftrightarrow \text{no interference}$ $C = 1 \leftrightarrow \text{interference}$

Transverse plane See S.R. Klein, J. Nystrand PRL 84(2000)2330; PLA 308(2003)323.

STAR Results on $Au+Au \rightarrow Au^*+Au^*+e^+e^-$

The total cross section is huge, 32 kb at RHIC!

The observed cross section is a factor $5 \cdot 10^{-8}$ lower! \Rightarrow e⁺,e⁻ emission angle $\theta \sim 1/\gamma \approx 1/100 \Rightarrow$ in beam-pipe.

Results in agreement with QED/equivalent photon calculations.

Low mass pairs, 140≤ m_{INV} ≤260 MeV

The photon virtuality important to describe the yield at low p_T .

STAR Collaboration, Phys.Rev. C70(2004)031902 21 – 25 May 2007 EDS07, DESY, Hamburg

Ultra-Peripheral Collisions in PHENIX

PHENIX (bird's eye view)

Level 1 Ultra-Peripheral Trigger: Veto on coincident BBC $|\eta| \sim 3 - 4$, Neutron(s) in at least on ZDC (E > 30 GeV), Large Energy (E > 0.8 GeV) cluster in EmCal.

Ultra-Peripheral Collisions in PHENIX

The goal is to search for the process γ +Au \rightarrow J/ Ψ +Au. There will also be a contribution from γ + γ \rightarrow e⁺e⁻.

dN/dminv (backgd subtracted) & with 2 fits of expected e+e- continuum shape (normalized at $m_{ee} = 1.8 - 2.2 \text{ GeV/c2}$)

dN/dm_{inv} after e⁺e⁻ continuum subtraction

Ultra-Peripheral Collisions in PHENIX

The coherent and incoherent contribution is separated based on the transverse momentum.

D. d'Enterria, Quark Matter 2005, nucl-ex/0601001;

D. Silvermyr, Workshop on Photoproduction at Collider Energies:

ECT* Trento, 15 – 19 January, 2007, http://www.ect.it/.

21 – 25 May 2007

EDS07, DESY, Hamburg

Joakim Nystrand

Preliminary J/Y cross section

$$\begin{split} d\sigma_{J/\Psi}/dy\big|_{y=0} &= 1/\text{BR} \times 1/(\text{Acc}\big|_{y=0}.\text{`ϵ}) \times 1/\epsilon_{\text{trig}} \times 1/\text{L}_{\text{int}} \times \text{N}_{J/\Psi}/\Delta y = \\ &= 1/(5.9\%)\times 1/(5.7\%\text{'}56.4\%)\times 1/(90\%)\times 1/120~\mu\text{b}^{\text{-1}}\times (10\pm3\pm3) = \\ &= 48.\pm16.~\text{(stat)}\pm18.~\text{(syst)}~\mu\text{b} \end{split}$$

- Measured J/Ψ yield at y=0 consistent w/ theoret. calcs. [1,2]
- Syst. uncertainty: coherent e⁺e⁻ continuum under J/Ψ (work in progress).
- Reduction of stat. errors need larger luminosity.
- Current uncertainties preclude yet detailed study of crucial model ingredients:
 - $G_A(x,Q^2)$, $\sigma(J/\Psi$ absorption).

^[1] Starlight: S.R. Klein, J.Nystrand PRC 60(1999)014903, NPA 752(2005)470

^[2] Strikman et al., PLB 626(2005)72.

"Ultra-peripheral" Collisions at the Tevatron

Recent results from CDF Collaboration on p+p \rightarrow p+p+e⁺e⁻ via $\gamma\gamma$: A. Abulencia et al. PRL 98 (2007) 112001.

Work in progress on p+p \rightarrow p+p+ μ + μ -(A. Hamilton, Workshop on Photoproduction at Collider Energies: ECT* Trento, 15 – 19 January, 2007, http://www.ect.it/.)

"Ultra-peripheral" Collisions at the Tevatron

Observed invariant mass distribution of the $\mu^+\mu^-$ pairs:

Three possible contributions to this process:

N.B. no feed down from χ_c to Ψ' . A contribution from O+P also possible (see talk by L. Szymanowski)

"Ultra-peripheral" Collisions at the Tevatron

Calculations for the first two ($\gamma\gamma$ and γ P):

 $\sigma(pp \rightarrow pp + J/\Psi(1S))$: 15 nb $\sigma \cdot Br(\mu\mu)$: 0.87 nb

 $\sigma(pp \rightarrow pp + \Psi'(2S))$: 2.4 nb $\sigma \cdot Br(\mu\mu)$: 18 pb

 $\sigma(pp \rightarrow pp + \mu\mu)$: 2.4 nb (m_{inv} > 1.5 GeV/c²)

Applying cuts on the $\mu^+\mu^-$:

 $p_T > 0.5 \text{ GeV/c}$ $|\eta| < 2.0$ \Rightarrow

Yield(Ψ ')/Yield(J/Ψ) \approx 1:50

σ(γp→Vp) parameterized from data. See S.R.Klein, J.Nystrand, PRL 92 (2004) 142003.

Conclusions and Outlook

- Several interesting results already obtained from RHIC and the Tevatron.
- The feasibility of studying electromagnetic interactions at hadron colliders has been proven.
- The prospects for the LHC are promising

