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Abstract
The coherent inelastic processes of the type a → b, which may take
place in the collisions of hadrons and γ-quanta with nuclei at very high
energies (the nucleus remains the same), are theoretically investigated.
The influence of matter inside the nucleus is taken into account by us-
ing the optical model based on the concept of refraction index. Analyt-
ical formulas for the effective cross-section σcoh(a→ b) are obtained,
taking into account that at ultrarelativistic energies the main contribu-
tion into σcoh(a → b) is provided by very small transferred momenta
in the vicinity of the minimum longitudinal momentum transferred to
the nucleus.

1 Momentum transfer at ultrarelativistic energies and coherent reactions on nuclei

In the present work we will investigate theoretically the processes of inelastic coherent
scattering at collisions of particles with nuclei at very high energies. It is essential that at ultra-
relativistic energies the minimum longitudinal momentum transferred to a nucleus tends to zero,
and in connection with this the role of coherent processes increases.

Let fa+N→b+N(q) = [Zfa+p→b+p(q) + (A − Z)fa+n→b+n(q)]/A be the average am-
plitude of an inelastic process a + N → b + N on a separate nucleon in the rest frame of the
nucleus (laboratory frame). Here Z is the number of protons in the target nucleus, (A − Z) is
the number of neutrons in the target nucleus, q = kb − ka is the momentum transferred to the
nucleon, ka and kb are the momenta of the particles a and b, respectively. In the framework of
the impulse approximation [1], taking into account the interference phase shifts at the inelastic
scattering of a particle a on the system of nucleons, the expression for the effective cross-section
of the coherent inelastic process a→ b on a nucleus can be presented in the following form:

σcoh(a→ b) =

∫
|fa+N→b+N (q)|2P (q)dΩb, (1)

where dΩb is the element of the solid angle of flight of the particle b in the laboratory frame,
and the magnitude P (q) has the meaning of the probability of the event that at the collision with
the particle a all the nucleons will remain in the nucleus and the quantum state of the nucleus
will not change. Let us introduce the nucleon density n(r) normalized by the total number of
nucleons in the nucleus:

∫
V n(r)d3r = A, where the integration is performed over the volume

of the nucleus. Then

P (q) =
∣∣∣
∫

V
n(ρ, z) exp(−iq⊥ρ) exp(−iq‖z)d2ρ dz

∣∣∣
2
. (2)

† speaker



Here the axis z is parallel to the initial momentum ka, q⊥ and q‖ are the transverse and
longitudinal components of the transferred momentum, respectively.

It is easy to see that the momenta |q| . 1/R, transferred to a nucleon (R is the radius
of a nucleus), give the main contribution to the effective cross-section of the coherent inelastic
process a → b on the nucleus. At ultrarelativistic energies, when Ea � 1/R, Eb � 1/R, the
recoil energy of the nucleon Erec ≈ |q|2/mN . (mNR

2)−1 and the much smaller recoil energy
of the nucleus can be neglected. In doing so, the effective flight angles for the particle b are very
small: θ . 1/kR � 1, where k = Ea ≈ Eb. Then it is possible to assume in Eqs. (1) and (2)
that the transverse and longitudinal transferred momenta are as follows:

|q⊥| = kθ, q‖ = qmin =
m2
a −m2

b

2k
, (3)

where ma and mb are the masses of the particles a and b, respectively. Here qmin is the minimum
transferred momentum corresponding to the ”forward” direction.

In most cases the characteristic momentum transferred to the nucleus at the inelastic coher-
ent scattering (|q| ∼ 1/R) is small as compared with the characteristic momentum transferred to
the nucleon in the process a+N → b+N . In connection with this, the amplitude fa+N→b+N (q)
in Eq.(1) can be replaced by its value fa+N→b+N (0) corresponding to the flight of the particle b
in the ”forward” direction. Taking into account that at small angles θ the solid angle in Eq. (1)
is dΩb = sin θdθdφ ≈ d2q⊥/k2 and using the properties of the two-dimensional δ-function, we
obtain, as a result of integrating the expression (1) over the transverse transferred momenta and
over the volume of the nucleus, the following equation:

σcoh(a→ b) =
4π2

k2
|fa+N→b+N (0)|2 ×

∫ (∣∣∣
∫ ∞

−∞
n(ρ, z) exp(−iqmin z) dz

∣∣∣
2
)
d2ρ, (4)

where qmin is determined by Eq. (3).

In the case of a spherical nucleus with the radius R and the constant density of nucleons
n0 = 3A/4πR3, Eq. (4) gives at sufficiently high energies, when qminR� 1:

σcoh(a→ b) =
8π3

k2
n2

0 |fa+N→b+N (0)|2R4 =
9π

2k2R2
A2 |fa+N→b+N (0)|2. (5)

In so doing, the magnitude ∆Ωb = 9π/2k2R2 has the meaning of the “effective” solid
angle of flight of the final particle b in the vicinity of the “forward” direction.

It should be noted that our consideration relates not only to binary reactions but also to
multiparticle coherent processes a → b1 + b2 + ...bi on nuclei at very high energies. In the
general case vector kb has the meaning of the total momentum of the system b = {b1, b2...bi}
with the effective mass mb. In so doing, the magnitude |fa+N→b+N (0)|2 determines the cross
section of the production of the system b, moving as a whole in the “forward” direction, at the
collision of particle a with the separate nucleon.



2 Effect of matter inside the nucleus on coherent processes

In the relations obtained above the multiple scattering of the initial and final particles on
nucleons of the nucleus was neglected. This is possible when the mean free paths of particles a
and b inside the nucleus are much greater than the nuclear radius R. Actually, the role of matter
inside the nucleus may be essential,- especially in the case of medium and heavy nuclei. For the
analysis of the effects of matter inside the nucleus we will apply the optical model of the nucleus
at high energy based on the concept of refraction index [1, 2].

Further we will consider the influence of matter inside the nucleus for binary reactions.
According to the known formula for the refraction index, being close to unity, the renormalized
momenta of ultrarelativistic particles a and b inside the nucleus can be presented in the form:

k̃a = ka +
ka
|ka|

χa(r), k̃b = kb +
kb
|kb|

χb(r),

where

χa(r) =
2πn(r)

k
fa+N→a+N (0), χb(r) =

2πn(r)

k
fb+N→b+N (0). (6)

Here, as before, n(r) is the density of nucleons inside the nucleus, k = Ea is the initial
energy in the rest frame of the nucleus (laboratory frame); fa+N→a+N (0) and fb+N→b+N (0)
are the average amplitudes of elastic scattering of the particles a and b on a nucleon at the zero
angle in the laboratory frame; the complex magnitudes χa and χb describe the phase shifts and
the absorption of the particles a and b at their passage through the matter inside the nucleus,
connected with the difference of the refraction indices from unity. The relations (6) hold at
|χa|/k � 1, |χb|/k � 1.

Taking into account the refraction indices of the particles a and b, the influence of matter
inside the nucleus on the coherent inelastic processes implies the introduction of the additional
complex phase shift into Eq. (4): the exponential factor exp(−iqminz) is replaced by
Q = exp[−iqminz + iδ(ρ, z)] . In the case of the spherical nucleus with the constant density
n(ρ, z) = n0 inside the interval 0 ≤ |z| ≤

√
R2 − ρ2 (ρ = |ρ|) and n(ρ, z) = 0 outside this

interval, the additional phase inside the considered interval is described by the equation:

δ(ρ, z) = χa (z +
√
R2 − ρ2) + χb (

√
R2 − ρ2 − z) =

= (χa − χb) z + (χa + χb)
√
R2 − ρ2 , (7)

where the magnitudes χa and χb are determined by Eq. (6) at n(r) = n0 .

Using the optical theorem [3], we can rewrite the relations for χa, χb in the form:

χa = i n0(1− i αa)σaN/2, χb = i n0(1− i αb)σbN/2,

where σan and σbn are the total cross-sections of interaction of the particles a and bwith nucleons,
averaged over the protons and neutrons of the nucleus, αa and αb are the ratios of the real parts of
the amplitudes fa+N→a+N (0) and fb+N→b+N (0), respectively, to their imaginary parts. Let us
note that the quantity Re (χb−χa) determines the additional longitudinal transferred momentum
connected with the presence of the matter.



Taking into account Eq. (7), after the replacement qminz → qminz−δ(ρ, z) in Eq. (4) and
the integration over z, we obtain the following expression for the cross-section of the coherent
reaction a→ b on a nucleus:

σcoh(a→ b) =
8π3

k2
n2

0

|fa+N→b+N (0)|2
|qmin + ∆χ|2 ×

×
∫ R

0

∣∣∣ exp
[
−2i (qmin − χa)

√
R2 − ρ2

]
− exp

[
2iχb

√
R2 − ρ2

]∣∣∣
2
ρ dρ, (8)

where ∆χ = χb − χa .

3 Dependence of cross-sections of inelastic coherent processes on the nuclear radius

The results of the section 1 are valid when all effects connected with the rescattering of
particles in the matter inside the nucleus are practically absent. In this situation the probabilities
of absorption of the particles a and b and the additional phase shifts at their passage through the
nucleus are close to zero. In the case of a spherical nucleus with the constant density of nucleons,
this leads to the restrictions: |χa|R� 1, |χb|R� 1 or La � R , Lb � R, where

La =
1

n0σaN
, Lb =

1

n0σbN
(9)

are the mean free paths inside the nucleus.

In the case of medium and heavy nuclei the radius of the nucleus R ≈ 1.1 ·10−13 A1/3 cm
then the density of nucleons, incorporated in Eq. (8), amounts to n0 ≈ 0.28 · 10 39 cm−3.

It follows from Eq. (8) that when both the mean free paths are small as compared with
the nuclear radius (La � R, Lb � R), the coherent processes are conditioned only by the
peripheral collisions of the initial particle a with the nucleons located in the surface layer of the
nucleus. In the considered case, neglecting in Eq. (8) the particle masses ( |qmin| � |∆χ| ), we
obtain at fb+N→b+N (0) 6= fa+N→a+N (0) :

σcoh(a→ b) = π
|fa+N→b+N (0)|2

|fb+N→b+N (0) − fa+N→a+N (0)|2×

×
[ L2

a

2
+
L2
b

2
+ 4L2

aL
2
b Re

(
1

La + Lb + i(Laαb − Lbαa)

)2 ]
. (10)

Let us consider now the situation when the total cross-section of the interaction of the
initial particle a with nucleons is small, so that σaN � σbN , La � R, Lb . R; in doing so,
the relation |fa+N→b+N (0)| � |fb+N→b+N (0)| should hold. In particular, we can deal with the
coherent production of vector mesons ρ0, ω, φ at the interaction of very high energy photons with
nuclei.



In the considered case Eq. (8) (without the terms, depending on the masses ma and mb)
gives:

σcoh(a→ b) = πR2

∣∣∣∣
fa+N→b+N (0)

fb+N→b+N(0)

∣∣∣∣
2

×
{

1+
1

x2

[ 1

2
(1−e−2x)−4

1− α2

(1 + α2)2
(1−e−x cosαx)−

− 8α

(1 + α2)2
e−x sinαx

]
+

1

x

[ 4

1 + α2
e−x cosαx − 4α

1 + α2
e−x sinαx− e−2x

]}
, (11)

where α ≡ αb, x = n0σbNR = R/Lb. At x � 1 (large cross-sections σbN , heavy nuclei) we
obtain the simple expression

σcoh(a→ b) = πR2

∣∣∣∣
fa+N→b+N (0)

fb+N→b+N (0)

∣∣∣∣
2

. (12)

Let us emphasize that, according to Eq. (12), the effective cross-section of the coherent
process a → b on a nucleus at very high energies has the same dependence on the number of
nucleons ( proportional to A2/3 ) as the cross-section of scattering of the final particle b on the
”black” nucleus, despite the smallness of the cross-section of interaction of the initial particle a
( for example, γ-quantum ) with a separate nucleon ( in connection with this, see [4,5] ).

For the coherent process γ → ρ0 on the lead nucleus (R = 1.1 · 10−13 A1/3 cm ≈ 6.5
Fm, Lρ ∼ 1.5 Fm, |fγ+N→ρ+N (0)/fρ+N→ρ+N (0)|2 ∼ 10−3), the formula (11) is applicable at
the energies of γ-quanta above several tens of GeV in the nucleus rest frame (k � m2

ρLρ ∼ 4.5
GeV). In doing so, σcoh(γ + Pb→ ρ0 + Pb) ∼ 1.3 mb.

When, on the contrary, σaN � σbN , Lb � R, La ∼ R, |fa+N→b+N (0)| �
|fa+N→a+N (0)|, then the effective cross-section of the coherent production of the particle b
is described by the same formulas (11), (12), in which one should take x = R/La, α ≡ αa and
replace the amplitude fb+N→b+N (0) by fa+N→a+N (0).

It should be emphasized that at La � R, Lb � R the coherent process a → b is con-
ditioned by the interaction of particle a with nucleons located near the surface of the nucleus in
the back hemisphere. On the contrary, at La � R, Lb � R this coherent process is conditioned
by the interaction of particle a with nucleons located in the vicinity of the nuclear surface in the
front hemisphere.

Taking into account that

fb+N→b+N(0) = i k σbN (1− iαb)/4π, (13)

it is easy to verify that the expansion of the expression (11) into the power series over the
parameter x leads at x � 1 to the relation (5), just as one would expect at the conditions
La � R,Lb � R. In this limit σcoh(a→ b) is proportional to R4 ( or to A4/3 ).

Let us note that the ratio of the values of the cross sections calculated according to the
formulas (12) and (5), respectively, is the following, taking into account Eqs. (9), (13):

ηb =
k2

8π2|fb+N→b+N (0)|2 n2
0R

2
= 2

(
Lb
R

)2 1

1 + |αb|2
. (14)



It is clear that the factor ηb has the magnitude of the order of the squared ratio of the
“transparency” volume for particle b in the vicinity of the back hemisphere of the nuclear surface
to the total volume of the nucleus. At La � R, Lb � R the ratio of the corresponding cross
sections ηa ∼ (La/R)2 has the analogous meaning with reference to particle a in the vicinity of
the front hemisphere of the nuclear surface.

In the given paper we have performed the concrete calculations for the case of a spherical
nucleus with the sharp boundary and the constant nucleon density. However, our general relations
contain the nucleon density depending on coordinates ( see Eqs. (4), (6) ) and make it possible,
in principle, to take into account the role of the nuclear surface. It is evident that when the
thickness of the boundary layer is very small as compared with the radius of the nucleus core,
then expression (5) at La � R, Lb � R does not change practically. But, in the case of very
small free paths, the “transparency” parameters ηb or ηa and, hence, the cross section of the
coherent inelastic process can depend essentially on the concrete structure of the surface of the
nucleus.

4 Summary

In the present work the coherent processes at the interaction of ultrarelativistic particles
with atomic nuclei are investigated. The role of these processes essentially increases at very
high energies due to the fact that the minimum momentum, transferred to a nucleon, tends to
zero with increasing energy. For the purpose of the analysis of the influence of matter inside the
nucleus on coherent reactions, the concept of refraction index is used. The relations, describing
the dependence of the effective cross-sections of the inelastic processes on the nuclear radius and
the mean free paths of the initial and final particles in the matter inside the nucleus, are obtained.

We did not consider the reverse transitions at the propagation of final particles in the matter
inside the nucleus. In principle, the contribution of these transitions could be studied in the
framework of the theory taking into account the distinction of the stationary states in the matter
from the stationary states in the vacuum due to the mixing of the vacuum states. One may expect
that really, with existing sizes of nuclei, the corresponding effects are relatively small.
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