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Introduction

The Odderon is defined as a singularity in the complex
J-plane, located at J = 1 when t = 0 and which contributes
to the odd-under-crossing amplitude F−. The concept of
Odderon first emerged in 1973 in the context of asymptotic
theorems

L. Lukaszuk and B. Nicolescu, Nuovo Cim. Lett. 8, 405 (1973)

The Odderon remains an elusive object, 34 years after its
invention.
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Introduction

In fact, the situation of the Odderon was already nicely
summarized in 1881 by Odilon Redon (Kazunori
Itakura, private communication, 2005)

The smiling spider
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Introduction

The Odderon is now a fundamental object in QCD and
CGC and it has to be found experimentally if QCD and
CGC are right.

How to find the Odderon at RHIC and LHC?
Regina F. Avila, Pierre Gauron, Basarab Nicolescu,

Eur. Phys. J. C49, 581-592 (2007)
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The Maximal Odderon
Special case: maximal asymptotic (s → ∞) behavior
allowed by the general principles of strong interactions:

σT (s) ∝ ln2 s, as s → ∞

and

∆σ(s) ≡ σp̄p
T (s) − σpp

T (s) ∝ ln s, as s → ∞ .

σT (s) ∝ ln2 s first discovered by Heisenberg in 1952
W. Heisenberg, Z. Phys. 133, 65 (1952)

Also proved in the context of the AdS/CFT dual string-gravity theory and of the Color Glass

Condensate approach

Also shown to provide the best description of the present experimental data on total cross-sections

(COMPETE Collaboration)

The maximal behavior of ImF+(s, t = 0) ∝ s ln2 s is naturally associated with the maximal

behavior ImF−(s, t = 0) ∝ ln s: strong interactions should be as strong as possible
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Strategy

We consider two cases: one in which the Odderon is absent and one in which
the Odderon is present.
We use the two respective forms in order to describe the 832 experimental
points for pp and p̄p scattering, from PDG Tables, for σT (s), ρ(s) and
dσ/dt(s, t), in the s-range

4.539 GeV 6
√

s 6 1800 GeV

and in the t-range
0 6 |t| 6 2.6 GeV2 .

The best form will be chosen.
In order to make predictions at RHIC and LHC energies, we will insist on the best
possible quantitative description of the data. Most of the existing
phenomenological models describe only the gross features of the data in a
limited region of energy and therefore they could lead to wrong quantitative
predictions at much higher energies.
From the study of the interference between F+(s, t) and F−(s, t) amplitudes we
will conclude which are the best experiments to be done in order to detect in a
clear way the Odderon.
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Definition of the amplitudes

F±(s, t) =
1
2

(Fpp(s, t) ± Fp̄p(s, t)) , F± ∼ even(odd)-under-crossing

F+(s, t) = F H
+ (s, t) + F P

+(s, t) + F PP
+ (s, t) + F R

+ (s, t) + F RP
+ (s, t) .

F−(s, t) = F MO
− (s, t) + F O

−(s, t) + F OP
− (s, t) + F R

−(s, t) + F RP
− (s, t) .

Fpp(s, t) = F+(s, t) + F−(s, t)
Fp̄p(s, t) = F+(s, t) − F−(s, t)

Normalization

σT (s) =
1
s

ImF (s, 0) , ρ(s) =
ReF (s, t = 0)

ImF (s, t = 0)

dσ

dt
(s, t) =

1
16πs2

|F (s, t)|2 .
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The Heisenberg F H
+ (s, t) amplitude

1
is

F H
+ (s, t) = H1 ln2 s̄ 2J1(K+τ̄)

K+τ̄
exp(b+

1 t)

+ H2 ln s̄J0(K+τ̄) exp(b+
2 t)

+ H3[J0(K+τ̄) − K+τ̄J1(K+τ̄)] exp(b+
3 t) ,

Contribution of a 3/2 - cut collapsing, at t = 0, to a triple pole located at
J = 1 and which satisfies the Auberson-Kinoshita-Martin asymptotic
theorem

G. Auberson, T. Kinoshita, and A. Martin, Phys. Rev. D3, 3185 (1971)

Jn → Bessel functions
Hk , b+

k (k = 1, 2, 3) and K+ → constants

s̄ =
“

s
s0

”

exp
`

− 1
2 iπ

´

, with s0 = 1 GeV2

τ̄ =
“

− t
t0

”1/2
ln s̄, with t0 = 1 GeV2 .
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The contribution of the Pomeron Regge pole F P
+ (s, t)

1
s

F P
+(s, t) = CP exp(βP t)[i − cot(π

2 αP(t))]
(

s
s0

)αP(t)−1

,

CP , βP → constants,

αP(t) = αP(0) + α′
P t ,

αP(0) = 1 ,

α′
P = 0.25 GeV−2 .
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The contribution of the Pomeron-Pomeron Regge cut
F PP

+ (s, t)

1
s

F PP
+ (s, t) = CPP exp(βPP t)[i sin(

π

2
αPP(t)) − cos(

π

2
αPP(t))]

×
(s/s0)

αPP (t)−1

ln[(s/s0) exp(−1
2 iπ)]

,

CPP , βPP → constants,

αPP(t) = αPP(0) + α′
PP t ,

αPP(0) = 1,

α′
PP = 1

2α′
P .
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The contribution of a secondary Regge (f0, a0)
trajectory whose intercept is around J = 1/2

1
s

F R
+ (s, t) = C+

R γ+
R (t) exp(β+

R t)[i − cot(1
2πα+

R (t))]
(

s
s0

)α+
R (t)−1

,

α+
R (t) = α+

R (0) + (α′
R)+t ,

(α′
R)+ = 0.88 GeV−2 (world phenomenological value)

γ+
R (t) =

α+
R (t)[α+

R (t) + 1][α+
R (t) + 2]

α+
R (0)[α+

R (0) + 1][α+
R (0) + 2]

,

C+
R , β+

R , α+
R (0) → constants
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The contribution of the reggeon-Pomeron Regge cut
F RP

+ (s, t)

1
s

F RP
+ (s, t) =

(

t
t0

)2

C+
RP exp(β+

RP t)[i sin(
π

2
α+

RP(t))−cos(
π

2
α+

RP(t))]

×
(s/s0)

α+
RP (t)−1

ln[(s/s0) exp(−1
2 iπ)]

,

α+
RP(t) = α+

RP(0) + (α′
RP)+t ,

(α′
RP)+ =

(α′
R)+α′

P
(α′

R)++α′
P

C+
RP , β+

RP , α+
RP(0) → constants
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The contribution of the maximal Odderon F MO
− (s, t)

1
s F MO

−
(s, t) = O1 ln2 s̄

sin(K−τ̄)

K−τ̄
exp(b−

1 t) + O2 ln s̄ cos(K− τ̄) exp(b−

2 t) + O3 exp(b−

3 t) ,

Contribution of two complex conjugate poles collapsing, at
t = 0, to a dipole located at J = 1

Satisfies the Auberson-Kinoshita-Martin asymptotic
theorem

Ok , b−
k (k = 1, 2, 3), K− → constants.
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exp(b−

1 t) + O2 ln s̄ cos(K− τ̄) exp(b−
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The contribution of the minimal Odderon Regge pole
F O
− (s, t)

1
s

F O
−(s, t) = CO exp(βO t)[i+tan( 1

2παO(t))]
„

s
s0

«αO (t)−1

[1+αO(t)][1−αO(t)] ,

αO(t) = αO(0) + α′
Ot ,

αO(0) = 1 ,

CO βO → constants.
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The contribution of the minimal Odderon-Pomeron
Regge cut F OP

−

1
s

F OP
− (s, t) = COP exp(βOP t)[sin(

1
2

παOP(t))+i cos(
1
2

παOP(t))]

×
(s/s0)αOP(t)−1

ln[(s/s0) exp(−1
2 iπ)]

,

αOP(t) = αOP(0) + α′
OP t ,

αOP(0) = 1 ,

α′
OP =

α′
O · α′

P

α′
O + α′

P
,

COP , βOP → constants.
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The contribution of a secondary Regge (ρ, ω)
trajectory whose intercept is around J = 1/2

1
s

F R
−(s, t) = −C−

R γ−

R (t) exp(β−

R t)[i + tan(
1
2

πα−

R (t))]
„

s
s0

«α−

R (t)−1

,

α−
R (t) = α−

R (0) + (α′
R)−t ,

αOP(0) = 1 ,

(α′
R)− = 0.88 GeV−2 ,

C−
R , β−

R , α−
R (0) → constants.
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The contribution of the Reggeon-Pomeron Regge cut
F RP
−

1
s

F RP
− (s, t) =

(

t
t0

)2

C−
RP exp(β−

RP t)[sin(
π

2
α−

RP(t))+i cos(
π

2
α−

RP(t))]

×
(s/s0)

α−

RP (t)−1

ln[(s/s0) exp(−1
2 iπ)]

,

α−
RP(t) = α−

RP(0) + (α′
RP)−t ,

(α′
RP)− =

(α′
R)−α′

P

(α′
R)− + α′

P
,

(α′
R)− = 0.88 GeV−2 ,

C−
RP , β−

RP , α−
RP(0) → constants.
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The case without the Odderon

Ok = 0 (k = 1, 2, 3), CO = 0, COP = 0

23 free parameters:
Hk , b+

k (k = 1, 2, 3), K+, CP , βP , CPP , βPP , C+
R ,

β+
R , α+

R (0), C+
RP , β+

RP , α+
RP(0), C−

R , β−
R , α−

R (0), C−
RP , β−

RP
and α−

RP(0)

χ2/dof = 14.2

the no-Odderon case describes nicely the data in the
t-region 0 6 |t | 6 0.6 GeV2, but totally fails to describe the
data for higher t-values

need for the Odderon
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The case with the Odderon

12 supplementary free parameters as compared with the no-Odderon case:
Ok , b−

k (k = 1, 2, 3), K−, CO , βO, α′

O , COP and βOP

The 23 free parameters associated with the dominant F+(s, t) amplitude and
with the component of F−(s, t) responsible for describing the data for ∆σ(s) and
∆ρ(s, t = 0), where

∆ρ(s, t = 0) ≡ ρp̄p(s, t = 0) − ρpp(s, t = 0)

are, almost all of them, well constrained.

The discrepancy between he no-Odderon model and the experimental data in
the moderate-t region (especially at

√
s = 52.8 GeV and

√
s = 541 GeV) is so

big that, in their turn, the supplementary 12 free parameters (at least, most of
them) are also well constrained.

Only the b−

1 , α−

RP(0), C+
RP , βO , β+

R and β−

R parameters (6 out of 35) are not
well determined (more than 15% error)
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Best-fit parameters
χ2

dof = 2.46 , χ2
dof

˛

˛

t=0
= 1.42

(276 experimental forward points out of a total of 832)

Parameters of FH
+ (s, t)

H1 b+
1 H2 b+

2 H3 b+
3 K+

(mb) (GeV−2) (mb) (GeV−2) (mb) (GeV−2)
0.4030 4.5691 -3.8616 7.1798 9.2079 6.0270 0.6571

± 0.0015 ± 0.0677 ± 0.0262 ± 0.1603 ± 0.2091 ± 0.0808 ± 0.0089

Maximal Odderon parameters
O1 b−1 O2 b−2 O3 b−3 K−

(mb) (GeV−2) (mb) (GeV−2) (mb) (GeV−2)
-0.0690 8.9526 1.4166 3.4515 -0.3558 1.1064 0.1267
± 0.0043 ± 1.6989 ± 0.0324 ± 0.0361 ± 0.0097 ± 0.0186 ± 0.0017

Reggeon poles and cuts parameters
P PP O OP R+ R− (RP)+ (RP)−

α(0) 0.48 0.34 -0.56 0.70
± 0.01 ± 0.02 ± 0.06 ± 0.20

C 40.43 -9.20 -6.07 11.83 38.18 47.09 -1930.1 8592.7
(mb) ± 0.17 ± 0.63 ± 0.50 ± 1.68 ± 2.64 ± 4.84 ± 749.8 ± 931.1
β 4.37 1.95 5.33 1.73 0.03 33.60 0.79 7.33

(GeV)−2
± 0.05 ± 0.07 ± 1.60 ± 0.14 ± 4.21 ± 41.74 ± 0.14 ± 0.15

α′ 0.57
(GeV)−2

± 0.14
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Results and predictions for dσ/dt

The structure (dip) region moves slowly, with increasing energy, from

|t | ≈ 1.35 GeV2 at
√

s = 52.8 GeV towards |t | ≃ 0.9 GeV2 at
√

s = 500 GeV.
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Oscillations in the difference between the pp and p̄p
differential cross-sections

∆

(

dσ

dt

)

(s, t) ≡

∣

∣

∣

∣

∣

(

dσ

dt

)p̄p

(s, t) −
(

dσ

dt

)pp

(s, t)

∣

∣

∣

∣

∣
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Mechanism of oscillations in ∆(dσ/dt)

There is an interesting phenomenon of oscillations present in ∆(
dσ

dt
),

due to the composition of the oscillations present in the
Heisenberg-type amplitude F H

+ (s, t) and in the Maximal Odderon
amplitude F MO

− (s, t)

The oscillations are induced by the AKM structure at finite energies of
the Heisenberg and the Maximal Odderon amplitudes

The most interesting oscillations, from experimental point of view, are
those centered around the t-value corresponding to the dip region in
dσ/dt
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How to detect oscillations in ∆(dσ/dt) at RHIC?

We can not directly test the existence of these oscillations at RHIC and
LHC energies, simply because we will not have both pp and p̄p
accelerators at these energies

However a chance to detect these oscillations at the RHIC energy√
s = 500 GeV still exists, simply because the UA4/2 Collaboration

already performed a high-precision p̄p experiment at a very close
energy - 541 GeV

By performing a very precise experiment at the RHIC energy
√

s = 500
GeV and by combining the corresponding pp data with the UA4/2 p̄p
high-precision data one has a non-negligible chance to detect an
oscillation centered around |t | ≃ 0.9 GeV2 and therefore to detect the
Odderon

It is precisely the oscillation centered around |t | ≃ 0.9 GeV2 which is
the reminder of the already seen oscillation centered around |t | ≃ 1.35
GeV2 at the ISR energy

√
s = 52.8 GeV
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How to detect the Odderon at LHC?

We predict

σpp
T (

√
s = 14 TeV) = 123.32 mb ,

∆σ(
√

s = 14 TeV) = −3.92 mb ,

ρpp(
√

s = 14 TeV, t = 0) = 0.103 ,

∆ρ(
√

s = 14 TeV, t = 0) = 0.094 .

A high-precision ρpp-measurement at LHC would be certainly a very
important test of the maximal Odderon, given the fact that our prediction is
sufficiently lower than what dispersion relations without Odderon
contributions could predict (ρ ≃ 0.12 − 0.14)

We also predict

a dip centered at |t | ≃ 0.35 GeV2 in dσ/dt at
√

s = 14 TeV
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Conclusions

The most spectacular signature of the Odderon is the predicted
oscillations in the difference between the differential cross-sections for
proton-proton and antiproton-proton at high s and moderate t . This
experiment can be done by using the STAR detector at RHIC and by
combining these future data with the already present UA4/2 data.

The Odderon could also be found by ATLAS experiment at LHC by
performing a high-precision measurement of the real part of the hadron
elastic scattering amplitude at small t .

The dips at |t | ≃ 0.9 GeV2 in dσ/dt at RHIC and at |t | ≃ 0.35 GeV2 at
LHC would be also indications of the experimental existence of the
Odderon.
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