Non-linear QCD at high energies

Eugene Levin, Tel Aviv University

The International Conference on Elastic and Diffractive Scattering (Blois Workshops), DESY, Hamburg, May 21 -25, 2007

A mini-review with personal opinion and attitude which can be wrong

The state of the art

The problem of high density QCD

- has not been solved;
- is needed to be solved;

Outline:

- Practical impact on the LHC physics;
- The BFKL Pomeron calculus: ups and downs;
- Statistical analogy approach: Langevin equation and generating functional;
- Summing Pomeron loops in the BFKL Pomeron calculus;
- The high energy asymptotic behaviour:
- Problems, ideas, solutions ... \equiv bright future ;

Practical impact on the LHC physics

Survival Probability for diffractive Higgs production

Tel Aviv Group (1994-present)
Durham Group (1998-present)

$$
<\left|S^{2}\right|>\approx 0.02
$$

Bartels, Bondarenko and Kutak (2006)

Miller (2006)
$<\left|S^{2}\right|>\approx 0.004$

W - Higgs boson correlations in inclusive Higgs production
CDF (1997)

$$
Y_{H} \approx Y_{W} \quad \frac{1}{\sigma_{e f f}}=\frac{1}{2 \pi R_{H}^{2}}
$$

$$
\begin{aligned}
& \sigma_{D P}=m \frac{\sigma(2 \text { jets }) \sigma(2 \text { jets })}{2 \sigma_{e f f}} \\
& \sigma_{e f f}=14.5 \pm 1.7 \pm 2.3 \mathrm{mb} \\
& \frac{1}{\sigma_{e f f}}=\frac{1}{2 \pi R_{H}^{2}} \\
& R_{H}^{2}=5 \div 7 G e V^{-2}
\end{aligned}
$$

- Hannes Jung at GGI WS on high density QCD asked to estimate such correlation for the LHC energy
- J. Miller (preliminary)

$$
\sigma_{D P}(L H C)=\frac{\sigma(W) \sigma(H)}{2 \sigma_{e f f}} \approx 3 \sigma_{D P}(C D F)
$$

The BFKL Pomeron calculus

News:

- Everything that has been done during the past three years is nothing more than understanding of the BFKL Pomeron calculus (Kozlov,E.L. \& Prygarin; Bondarenko);

The feedback from the probabilistic interpretation: four Pomeron interactions (Lublinsky \& E.L) ;

The news: The Pomeron interaction generates a new state with the intercept large than intercept of two BFKL Pomerons (Hatta \& Mueller; E.L, Miller \& Prygarin);

The sad truth: we have to start from the very beginning not only in summing Pomeron loops but also in MFA ? !

Statistical approach: its beauty and problems

We know from the old good days of Reggeon Field Theory (Pomeron calculus) that this theory is the field theory for directed percolation
(Grassberger \& Sudermeyer (1978), Obukhov (1980), Cardy \& Sugar (1980))
but because of the advent of QCD we did not investigate this idea in the full strength.

TIME HAS COME

People: Blaizot, Brunet, Derrida, Enberg, Golec-Biernat, Hatta, Iancu, Itakura, E.L., Lublinsky, McLerran, Marquet, Mueller, Munier, Peshanski, Shoshi, Soyez, Triantafyllopoulos + nearly everybody

The BEAUTY: we can model our high energy amplitude by creating some statistical system (glass???) and make the real experiment, may be, just on the desk

Langevin equation:

$$
\begin{aligned}
& \frac{\partial \Phi}{\partial Y}=\frac{\bar{\alpha}_{S}}{2 \pi} K \bigotimes \Phi-\frac{2 \pi \bar{\alpha}_{S}^{2}}{N_{c}} \Phi^{2}+\zeta \\
& \cdot \quad<|\zeta|>=0 ; \quad<|\zeta \zeta|>\neq 0
\end{aligned}
$$

Langevin equation for Einstein diffusion:

$$
\frac{d \vec{v}}{d t}=-\lambda \vec{v}+\zeta
$$

The main prediction:
(lancu, Mueller \& Munier (2004))

- violation of the geometrical scaling behaviour ;
- appearance of new saturation scale;
- $A(z, Y)=A\left(\frac{\ln \left(r^{2} Q_{n e w, s}^{2}\right)}{\sigma}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \int d z T(z) e^{-\frac{(z-<z>)^{2}}{2 \sigma^{2}}}$
- $\sigma^{2} \propto Y ; \quad z=\ln \left(r^{2} Q_{s}^{2}\right)$ where r is the dipole size;
- $<z>=\ln \left(r^{2} Q_{n e w, s}^{2}\right) ; Q_{n e w, s}=$ new saturation (diffusion) scale
- $T(z)=$ solution in the MFA;

The BFKL Pomeron calculus leads to (Kozlov, E.L. \& Prygarin)

- $\quad<\zeta\left(x_{1}, x_{2} ; Y\right) \zeta\left(x_{1}^{\prime}, x_{2}^{\prime} ; Y^{\prime}\right)>=B \delta\left(Y-Y^{\prime}\right) \delta\left(x_{1}-x_{1}^{\prime}\right) \delta\left(x_{2}-x_{2}^{\prime}\right)$
with
- $B \equiv 2 \frac{2 \pi \bar{\alpha}_{S}}{N_{c}}\left(\frac{1}{p_{1}^{2} p_{2}^{2} \Phi^{+}\left(x_{1}, x_{2} ; Y\right)}\right)^{2}$
$\times \int \frac{d^{2} x_{3}}{x_{12}^{2} x_{13}^{2} x_{23}^{2}}\left(L_{12} \Phi\left(x_{1}, x_{2} ; Y\right)\right) \Phi^{+}\left(x_{1}, x_{3} ; Y\right) \Phi^{+}\left(x_{3}, x_{2} ; Y\right)$
Price for simplification :

1. assumption: $L_{12} \Phi\left(x_{1}, x_{2} ; Y\right)=\Phi\left(x_{1}, x_{2} ; Y\right)$;
2. simplification: using the momentum representaion and looosing the connection to correct D.O.F.;
3. assumption: $b \gg\left\{x_{12} ; x_{13} ; x_{32}\right\}$ and, therefore, we are looosing a possibily to calculate the Pomeron loops;

Finally

$$
\begin{aligned}
& \bullet \quad<\zeta(k, b ; Y) \zeta\left(k^{\prime}, b^{\prime} ; Y\right)>= \\
& \frac{4 \pi \bar{\alpha}_{S}^{2}}{N_{c}} \Phi(k, b ; Y) \delta^{(2)}\left(\vec{b}-\overrightarrow{b^{\prime}}\right) \delta^{(2)}\left(\vec{k}-\overrightarrow{k^{\prime}}\right) \delta\left(Y-Y^{\prime}\right)
\end{aligned}
$$

Questions and Surprises:

- The Langevin equation for the amplitude looks as follows:

$$
\frac{\partial N}{\partial Y}=\bar{\alpha}_{S}\left(N-N^{2}+\bar{\alpha}_{S} \sqrt{2 N} \zeta\right)
$$

Only at $N<\bar{\alpha}_{S}^{2}$ the third term is essential . On the other hand it sums the enhanced diagrams, how is it possible?

- In the toy-model equation does not lead to decreasing amplitude at high energy (Munier(talk at GGI WS); Naftali (private communication)) in contradiction with the exact solution?!
- For $z<0$ the solution of the BFKL equation leads to the geometrical scaling behaviour (lancu, Itakura \& McLerran (2002). How to match this solution with the scaling violating one?!
- At first sight the b correlation depend on future. What is wrong?

- For up-looking fan diagrams:

$$
\frac{\partial N}{\partial Y}=\bar{\alpha}_{S}\left\{K \otimes N+\sqrt{\bar{\alpha}_{S}^{2} N}\right\}
$$

(i) what is the initial condition to get MFA?
(ii) why there is no scaling violation?

Summinmg Pomeron loops in the BFKL Pomeron calculus

(E.L. , Miller \& Prygarin)

$$
1 \approx \bar{\alpha}_{S} Y \leq \ln 1 / \bar{\alpha}_{S}^{2} \leq \bar{\alpha}_{S} Y \leq \bar{\alpha}_{S} Y \leq 1 / \bar{\alpha}_{S}
$$

$1 \approx \bar{\alpha}_{S} Y \leq \ln 1 / \bar{\alpha}_{S}^{2} \longrightarrow$ LO BFKL Pomeron
$\ln 1 / \bar{\alpha}_{S}^{2} \leq \bar{\alpha}_{S} Y \leq 1 / \bar{\alpha}_{S} \longrightarrow B F K L$ Pomeron calculus
$1 / \bar{\alpha}_{S} \leq \bar{\alpha}_{S} Y \longrightarrow$ NLO BFKL Pomeron and non-linear QCD

Overlapping singularity:

$$
\begin{array}{r}
\omega=\omega\left(2 \gamma_{0}-1\right)=2 \omega\left(\gamma_{0}\right) \\
-A \propto Y^{2} e^{2 \omega\left(\gamma_{0}\right) Y}>e^{2 \omega_{B F K L}(\gamma=1 / 2) Y}
\end{array}
$$

Scenario :

$\gamma_{0}>\gamma_{c r}$ therefore, two Pomerons (γ_{1} and γ_{2}) are inside the saturation region;

- Inside the saturation region $\omega_{s a t}(\gamma)=\frac{\omega\left(\gamma_{c r}\right)}{1-\gamma_{c r}}(1-\gamma)$ (Bartels \& E.L. (1992)) ;
- equation $2 \omega_{\text {sat }}\left(\gamma_{0}\right)=\omega_{\text {pert }}\left(2 \gamma_{0}-1\right)$ has no solution;

The scenario:

- We can neglect the overlapping singularities;
- We are dealing with the system of the noninteracting BFKL Pomerons;
- For summing Pomeron loops we can use the lancu-Mueller-Patel -Salam approximation, improved by the renormalization of the scattering amplitude at low energies;

An example:

Solution:

For model BFKL kernel

$$
\omega(\gamma)=\bar{\alpha}_{S}\left\{\begin{array}{l}
\frac{1}{\gamma} \quad \text { for } r^{2} Q_{s}^{2} \ll 1-\operatorname{summing} \quad\left(\bar{\alpha}_{S} \ln \left(1 /\left(r^{2} Q_{s}^{2}\right)\right)\right)^{n} \\
\frac{1}{1-\gamma} \quad \text { for } r^{2} Q_{s}^{2} \gg 1-\operatorname{summing}\left(\bar{\alpha}_{S} \ln \left(r^{2} Q_{s}^{2}\right)\right)^{n}
\end{array}\right.
$$

we obtain:
 - geometrical scaling behaviour; - rather slow the asymptotic value, $1-N \propto \exp (-z)$ $z=\ln \left(r^{2} Q_{s}^{2}\right) ;$

Conclusions

" Once you eleminate the impossible what remains is the solution - no matter how improbable it may seem"

