Exclusive J/Ψ and Υ hadroproduction and the OCD odderon

Lech Szymanowski

Universite Paris-Sud, Orsay, Universite de Liège and Soltan Inst. for Nucl. Studies, Warsaw.

Based on work in collaboration with

A. Bzdak, J.-R. Cudell and L. Motyka

12th International EDS/Blois Conference, DESY, Hamburg 21-25th May 2007

Motivation

• Puzzle:

 $\mathsf{QCD} \to$

TWO colour singlet reggeons with intercepts around 1:

POMERON (
$$C=1$$
) $\sigma_{AB} + \sigma_{\bar{A}B}$

$$\sigma_{AB} + \sigma_{\bar{A}B}$$

ODDERON (
$$C = -1$$
)

$$\sigma_{AB} - \sigma_{\bar{A}B}$$

which still escapes experimental verification

- Attempts to see odderon:
- HERA: $\gamma p \to \pi^0 N^*$, $\gamma p \to a_2 N^*$, $\gamma p \to f_2 N^*$
- theoretical predictions for $\gamma p \rightarrow \eta_c p$ small cross-section
- asymmetries in pion pair diffractive production
- some evidence for odderon in elastic pp and $p\bar{p}$ scattering at CERN-ISR at $\sqrt{s}=53{\sf GeV}$ in the dip region $|t|\sim 1.5{\sf GeV}^2$ –

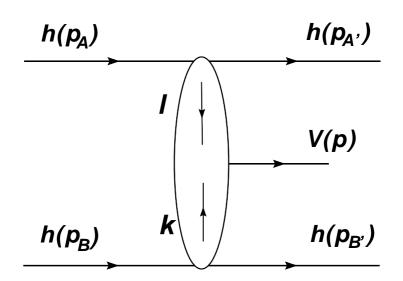
Our proposition:

hep-ph/0702134, Phys.Rev.D

Exclusive hadroproduction of $J/\Psi(\Upsilon)$:

A. Schäfer et al 1991 non-perturbative P and O

$$h(p_A)+h(p_B) \to h(p_{A'})+V(p)+h(p_{B'}),$$
 $h=$ (anti)proton, $V=J/\psi$ or Υ , i.e. $J^{PC}=1^{--}$ meson

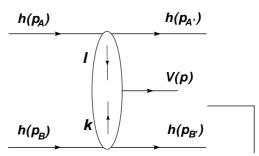


The lowest order diagrams for $h(p_A) + h(p_B) \rightarrow h(p_{A'}) + V(p) + h(p_{B'})$

Method of calculation:

- ullet the impact factor representation of ${\mathcal M}$
- \bullet the k_{\perp} -factorization

Kinematics



$$p_A$$
, p_B two light-like Sudakov vectors $p_A^2 = p_B^2 = 0$
 $s = (p_A + p_B)^2 = 2p_A \cdot p_B$

$$p_{A'} = (1 - x_A)p_A + \frac{l^2}{s(1 - x_A)}p_B - l_{\perp}$$
 $l^2 = -l_{\perp} \cdot l_{\perp}$,

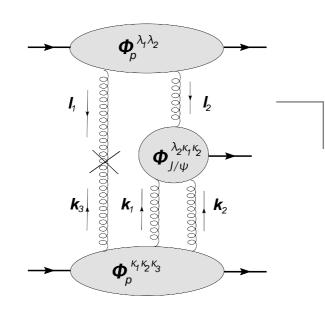
$$p_{B'} = \frac{k^2}{s(1-x_B)}p_A + (1-x_B)p_B - k_{\perp}$$

$$p = \alpha_p p_A + \beta_p p_B + p_\perp$$

$$\alpha_p = x_A - \frac{\mathbf{k}^2}{s(1-x_B)} \approx x_A \; , \; \beta_p = x_B - \frac{\mathbf{l}^2}{s(1-x_A)} \approx x_B \; ,$$
 $p_{\perp} = l_{\perp} + k_{\perp} \; ,$

the mass-shell condition for $V=J/\psi, \Upsilon$, $m_V^2=sx_Ax_B-({\pmb l}+{\pmb k})^2$

P Ofusion: \mathcal{M}_{PO}



$$\mathcal{M}_{PO} = -is \; \frac{2 \cdot 3}{2! \, 3!} \frac{4}{(2\pi)^8}$$

$$\int \frac{d^2 \boldsymbol{l}_1}{\boldsymbol{l}_1^2} \, \frac{d^2 \boldsymbol{l}_2}{\boldsymbol{l}_2^2} \, \delta^2 (\boldsymbol{l}_1 + \boldsymbol{l}_2 - \boldsymbol{l}) \, \frac{d^2 \boldsymbol{k}_1}{\boldsymbol{k}_1^2} \, \frac{d^2 \boldsymbol{k}_2}{\boldsymbol{k}_2^2} \, \frac{d^2 \boldsymbol{k}_3}{\boldsymbol{k}_3^2} \, \delta^2 (\boldsymbol{k}_1 + \boldsymbol{k}_2 + \boldsymbol{k}_3 - \boldsymbol{k})$$

$$\delta^2(\boldsymbol{k}_3 + \boldsymbol{l}_1) \, \boldsymbol{k}_3^2 \, \delta^{\lambda_1 \kappa_3} \cdot \Phi_P^{\lambda_1 \lambda_2}(\boldsymbol{l}_1, \boldsymbol{l}_2) \cdot \Phi_P^{\kappa_1 \kappa_2 \kappa_3}(\boldsymbol{k}_1, \boldsymbol{k}_2, \boldsymbol{k}_3) \cdot \Phi_{J/\psi}^{\lambda_2 \kappa_1 \kappa_2}(\boldsymbol{l}_2, \boldsymbol{k}_1, \boldsymbol{k}_2)$$

 $\Phi_P^{\lambda_1\lambda_2}(\pmb{l}_1,\pmb{l}_2)$ - proton impact-factor with pomeron exchange

 $\Phi_P^{\kappa_1\kappa_2\kappa_3}(\pmb{k}_1,\pmb{k}_2,\pmb{k}_3)$ - proton impact-factor with odderon exchange

$$\Phi_{J/\psi}^{\lambda_2\kappa_1\kappa_2}(m{l}_2,m{k}_1,m{k}_2)$$
 - effective J/Ψ production vertex

(anti)proton impact-factors

Fukugita-Kwiecinski eikonal model-

quark i-factor with pomeron exchange

$$\Phi_q^{\lambda_1 \lambda_2}(\boldsymbol{l}_1, \boldsymbol{l}_2) = -\bar{g}^2 \cdot 2\pi \cdot \frac{\delta^{\lambda_1 \lambda_2}}{2 N_c} = -\bar{\alpha}_s \cdot 8\pi^2 \cdot \frac{\delta^{\lambda_1 \lambda_2}}{2 N_c} ,$$

quark i-factor with pomeron exchange

$$\Phi_q^{\kappa_1 \kappa_2 \kappa_3}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = i \ \overline{g}^3 \ (2\pi)^2 \ \frac{d^{\kappa_3 \kappa_2 \kappa_1}}{4N_c} = i \ \overline{\alpha}_s^{\frac{3}{2}} \ 2^5 \ \pi^{\frac{7}{2}} \ \frac{d^{\kappa_3 \kappa_2 \kappa_1}}{4N_c} \ ,$$

 $\bar{\alpha}_s = \bar{g}^2/(4\pi)$ and $d^{\kappa_3\kappa_2\kappa_1}$ the symm. str. constants of SU(3)

nucleon i-factor with the pomeron exchange

$$\Phi_P^{\lambda_1 \lambda_2}(\boldsymbol{l}_1, \boldsymbol{l}_2) = 3 \,\mathcal{F}_P(\boldsymbol{l}_1, \boldsymbol{l}_2) \,\Phi_q^{\lambda_1 \lambda_2}(\boldsymbol{l}_1, \boldsymbol{l}_2)$$

$$\mathcal{F}_P(\boldsymbol{l}_1, \boldsymbol{l}_2) = F(\boldsymbol{l}_1 + \boldsymbol{l}_2, 0, 0) - F(\boldsymbol{l}_1, \boldsymbol{l}_2, 0)$$

$$F(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = \frac{A^2}{A^2 + \frac{1}{2}((\mathbf{k}_1 - \mathbf{k}_2)^2 + (\mathbf{k}_2 - \mathbf{k}_3)^2 + (\mathbf{k}_3 - \mathbf{k}_1)^2)}, \quad A = m_\rho/2$$

(anti)proton impact factors cntd

nucleon i-factor with the odderon exchange

$$\Phi_P^{\kappa_1\kappa_2\kappa_3}(\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3) = 3 \,\mathcal{F}_O(\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3) \,\Phi_q^{\kappa_1\kappa_2\kappa_3}(\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3) \,,$$

$$\mathcal{F}_{O}(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3})$$

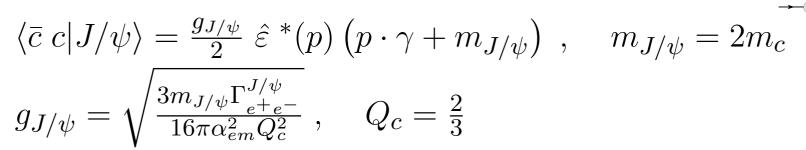
$$= F(\mathbf{k} = \mathbf{k}_{1} + \mathbf{k}_{2} + \mathbf{k}_{3}, 0, 0) - \sum_{i=1}^{3} F(\mathbf{k}_{i}, \mathbf{k} - \mathbf{k}_{i}, 0) + 2 F(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}),$$

anti-nucleon i-factors

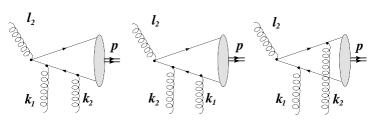
$$\Phi_{\bar{P}}^{\kappa_1 \kappa_2} = \Phi_{P}^{\kappa_1 \kappa_2} , \quad \Phi_{\bar{P}}^{\kappa_1 \kappa_2 \kappa_3} = -\Phi_{P}^{\kappa_1 \kappa_2 \kappa_3}$$

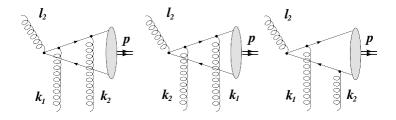
effective J/Ψ production vertices

• $\bar{c} c \rightarrow J/\Psi$ production vertex



ullet effective production vertex $\Phi_{J/\psi}^{\lambda_2\kappa_1\kappa_2}(m{l}_2,m{k}_1,m{k}_2)$





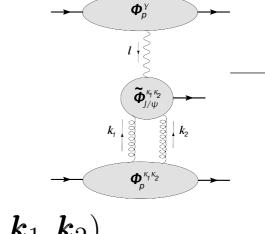
effective J/Ψ production vertices cntd.

$$\Phi_{J/\psi}^{\lambda_{2}\kappa_{1}\kappa_{2}}(\boldsymbol{l}_{2},\boldsymbol{k}_{1},\boldsymbol{k}_{2})
= g^{3} \frac{d^{\kappa_{1}\kappa_{2}\lambda_{2}}}{N_{c}} V_{J/\psi}(\boldsymbol{l}_{2},\boldsymbol{k}_{1},\boldsymbol{k}_{2}) = \alpha_{s}^{\frac{3}{2}} 8\pi^{\frac{3}{2}} \frac{d^{\kappa_{1}\kappa_{2}\lambda_{2}}}{N_{c}} V_{J/\psi}(\boldsymbol{l}_{2},\boldsymbol{k}_{1},\boldsymbol{k}_{2}),
V_{J/\psi}(\boldsymbol{l}_{2},\boldsymbol{k}_{1},\boldsymbol{k}_{2}) =
4\pi m_{c} g_{J/\psi} \left[-\frac{x_{B}\varepsilon^{*}\cdot p_{B}+\varepsilon^{*}\cdot l_{2\perp}}{\boldsymbol{l}_{2}^{2}+(\boldsymbol{k}_{1}+\boldsymbol{k}_{2})^{2}+4m_{c}^{2}} + \frac{\varepsilon^{*}\cdot l_{2\perp}+\varepsilon^{*}\cdot p_{B}\left(x_{B}-\frac{4\boldsymbol{k}_{1}\cdot\boldsymbol{k}_{2}}{sx_{A}}\right)}{\boldsymbol{l}_{2}^{2}+(\boldsymbol{k}_{1}-\boldsymbol{k}_{2})^{2}+4m_{c}^{2}} \right]$$

ullet the diagrams $O\ P$ from $P\ O$

$$\mathcal{M}_{OP} = \mathcal{M}_{PO}|_{(\boldsymbol{l}_i,\lambda_i) \to (\boldsymbol{k}_i,\kappa_i), (\boldsymbol{k}_j,\kappa_j) \to (\boldsymbol{l}_j,\lambda_j), x_A \leftrightarrow x_B}$$

γ P fusion: $\mathcal{M}_{\gamma P}$



$$\mathcal{M}_{\gamma P} = -\frac{1}{2!} \cdot s \cdot \frac{4}{(2\pi)^4 \, \boldsymbol{l}^2} \, \Phi_P^{\gamma}(\boldsymbol{l})$$

$$\int \frac{d^2 \mathbf{k}_1}{\mathbf{k}_1^2} \frac{d^2 \mathbf{k}_2}{\mathbf{k}_2^2} \, \delta^2(\mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}) \, \Phi_P^{\kappa_1 \kappa_2}(\mathbf{k}_1, \mathbf{k}_2) \, \tilde{\Phi}_{J/\psi}^{\kappa_1 \kappa_2}(\mathbf{l}, \mathbf{k}_1, \mathbf{k}_2)$$

the photon-proton form-factor

$$\Phi_P^{\gamma}(\boldsymbol{l}) = -ie \cdot F(\boldsymbol{l}, 0, 0) \quad \Phi_{\bar{P}(\boldsymbol{l})}^{\gamma} = -\Phi_P^{\gamma}(\boldsymbol{l})$$

ullet the effective J/Ψ production vertex in pomeron- γ fusion

$$\Phi_{J/\psi}^{\kappa_1 \kappa_2}(\boldsymbol{l}, \boldsymbol{k}_1, \boldsymbol{k}_2) = g^2 e Q_c \frac{2\delta^{\kappa_1 \kappa_2}}{N_c} V_{J/\psi}(\boldsymbol{l}, \boldsymbol{k}_1, \boldsymbol{k}_2)$$
$$= \alpha_s e Q_c 8\pi \frac{\delta^{\kappa_1 \kappa_2}}{N_c} V_{J/\psi}(\boldsymbol{l}, \boldsymbol{k}_1, \boldsymbol{k}_2)$$

ullet γP versus $P\gamma$ $\mathcal{M}_{P\,\gamma} = \mathcal{M}_{\gamma\,P}|_{\,(m{k}_i,\kappa_i) o(m{l}_j,\lambda_j),\;x_A\leftrightarrow x_B}$

Estimates for the cross sections

• P O fusion:

$$\mathcal{M}_{PO}^{\mathrm{tot}} = \mathcal{M}_{PO} + \mathcal{M}_{OP}$$

$$\frac{d\sigma}{dy} = \sum_{\varepsilon} \int_{t_{\min}^A}^{t_{\max}} dt_A \int_{t_{\min}^B}^{t_{\max}} dt_B \int_0^{2\pi} d\phi \, \frac{d\sigma^{(\varepsilon)}}{dy \, dt_A \, dt_B \, d\phi}$$

where

$$\frac{d\sigma^{(\varepsilon)}}{dy\,dt_A\,dt_B\,d\phi} = \frac{1}{512\pi^4 s^2} \,|\mathcal{M}_{PO}^{\text{tot}}|^2$$

$$t_A={m l}^2$$
, $t_B={m k}^2$, and we set $t_{\min}^A=t_{\min}^B=0$

 ϕ is the azim. angle between k and l,

 $y \simeq \frac{1}{2} \log(x_A/x_B)$ is the rapidity of the meson in the colliding hadrons c.m. frame.

Estimates cntd

• γ P fusion with $\mathcal{M}_{\gamma P}$, $\mathcal{M}_{P \gamma}$ in the same way, but

$$\frac{d\sigma_{\gamma}}{dydt_{A}dt_{B}}\sim 1/t_{i},\ \ i=A,B \ \ \text{at}\ t_{i}\rightarrow 0 \ \ \text{due to}\ \ \gamma \ \ \text{propagator};$$

W-W approximation
$$\to t_{\min}^A \simeq m_p^2 x_A^2$$
 and $t_{\min}^B \simeq m_p^2 x_B^2$

 $t_{\rm max}$ could be large, but then $\Phi_P^{\gamma}({\pmb l})$ is unreliable: \to $t_{\rm max}=1.44~{\rm GeV^2}$

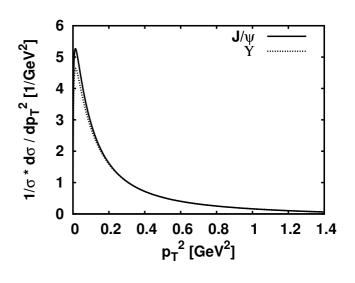
Naive estimates

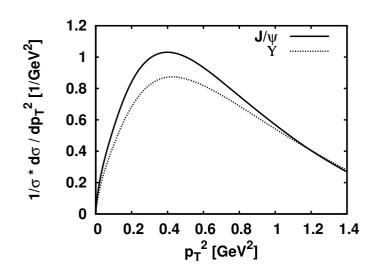
$d\sigma/dy$	J/ψ		Υ	
	odderon	photon	odderon	photon
$p\bar{p}$	20 nb	1.6 nb	36 pb	1.1 pb
pp	11 nb	2.3 nb	21 pb	1.7 pb

Estimates

differential distributions

$$\frac{d\sigma}{dyd\boldsymbol{p}^{2}}\Big|_{\text{norm}} = \left(\frac{d\sigma}{dy}\right)^{-1} \sum_{\varepsilon} \int_{\boldsymbol{k}^{2} < t_{\text{max}}} d^{2}k \int_{\boldsymbol{l}^{2} < t_{\text{max}}} d^{2}l \frac{d\sigma^{(\varepsilon)}}{dy d^{2}k d^{2}l} \delta((\boldsymbol{k} + \boldsymbol{l})^{2} - \boldsymbol{p}^{2})$$





for $p\bar{p} \to p\bar{p}V$ and

pp o pp V .

Corrected P-O estimates

$$\frac{d\sigma^{\text{corr}}}{dy}\Big|_{y=0} = \bar{\alpha}_s^5 S_{\text{gap}}^2 E(s, m_V) \frac{d\sigma}{dy}$$

 $d\sigma/dy$ is the c.-sec. at $\bar{\alpha}_s=1$

BFKL evolution \rightarrow phenom. enh. factor $E(s, m_V)$, $V = J/\psi, \Upsilon$

the high energy limit constrains the allowed energy and rapidity range:

 $x_A < x_0$ and $x_B < x_0$, and we set $x_0 = 0.1$

the central prod. of J/ψ and Υ : $y \simeq 0$, where

$$x_A \simeq x_B \simeq m_V/\sqrt{s}$$

the effects of QCD ev. of the pomeron amplitude \rightarrow enh. factor $\exp(\lambda \, \Delta y)$ where $\Delta y \simeq \log(x_0/x_A)$ is the rapidity evolution length of the QCD pomeron

$$E(s, m_V) = (x_0 \sqrt{s}/m_V)^{2\lambda}$$

HERA: $\lambda = 0.2$ for J/Ψ , $\lambda = 0.35$ for Υ

Corrected P-O est. cntd

$$E(s, m_{J/\Psi}) = 5$$
 at Tevatron and 12 for LHC $E(s, m_\Upsilon) = 9$ at Tevatron and 33 for LHC

for the odderon: BKP eq. → flat dependence on the gap size

• strong coupling constant $\alpha_s(m_c)$

$$lpha_s(m_c)=0.38$$
 with $m_c=m_{J/\psi}/2$ for J/Ψ $lpha_s(m_b)=0.21$ with $m_b=m_\Upsilon/2$ for Υ

ullet strong coupling constant $\bar{\alpha}_s$

$$pp$$
 and $\bar{p}p$ c.-sec. $\rightarrow \bar{\alpha}_s = 0.7 - 0.9$

recent analysis of elastic pp and $\bar{p}p$ scatt. $\rightarrow \bar{\alpha}_s = 0.3$

Corr. P-O estimates cntd

we get from J/Ψ photoprod. off proton with FK im.-fact.

$$\mathcal{M}_{\gamma} = is \, \pi e Q_c \, \bar{\alpha}_s \alpha_s(m_c) \, g_{J/\psi} \, \frac{N_c^2 - 1}{N_c^2} \, \frac{3 \, \log(3m_c^2/A^2)}{m_c(m_c^2 - A^2/3)}$$

t-dependence: $\exp(-Bt)$, for moderate t, with $B \simeq 4.5 \text{ GeV}^{-2}$

the J/ψ excl. photoproduction c.-section compared to the data at $W \simeq 10 \text{ GeV} \to \bar{\alpha}_s \simeq 0.6-0.7$.

Corr. P-O est. cntd

• S_{gap}^2 soft gap surviving factor (sgsf)

smallest $\bar{\alpha}_s=0.3$ was obtained with neglected sgsf, i.e. $S_{qap}^2=1 \to \textit{passimistic scenario}$

optimistic scenario: largest $\bar{\alpha}_s=1$ plus Durham two chan. eik. model:

 $S_{gap}^2=0.05$ for excl. prod. at the Tev. and $S_{gap}^2=0.03$ for the LHC

central scenario: $\bar{\alpha}_s=0.75$ and $S^2_{gap}=0.05$ for excl. prod. at the Tev. and $S^2_{gap}=0.03$ for the LHC

Corrected $\gamma - P$ estimates

analogously as in the case of P-O fusion BUT

in the case of γ exchange, the pp and $p\bar{p}$ scatter at large impact parameters Khoze et al Eur.Phys.J. C24 (2002)

$$\rightarrow S_{gap}^2=1$$
 and

$$\frac{d\sigma_{\gamma}^{\text{corr}}}{dy}\Big|_{y=0} = \bar{\alpha}_s^2 E(s, m_V) \frac{d\sigma_{\gamma}}{dy}$$

Corrected estimates

$d\sigma^{\rm corr}/dy$	J/ψ		Υ	
	odderon	photon	odderon	photon
Tevatron	0.3–1.3–5 nb	0.8–5–9 nb	0.7–4–15 pb	0.8–5–9 pb
LHC	0.3–0.9–4 nb	2.4–15–27 nb	1.7–5–21 pb	5–31–55 pb

- γ -P and P-O ampl. do not interfere in our approx. \rightarrow they can be treated independently
- P-O contrib. uncertain by the factor 3-5
- "odderon to γ ratio": $R = [d\sigma^{\rm corr}/dy]/[d\sigma^{\rm corr}_{\gamma}/dy]$
- R varies between 0.3 and 0.6 for J/Ψ at Tevatron 0.06 and 0.15 for J/Ψ at LHC
- R varies between 0.8 and 1.7 for Υ at Tevatron 0.15 and 0.4 for Υ at LHC

Corrected estimates cntd

ullet γ P contribution versus HERA data

Khoze et al Eur.Phys.J. C24 (2007) Klein+Nystrand PRL 92(2004)

WW + HERA data:

$$d\sigma/dy(p\bar{p}\to p\bar{p}J/\psi)|_{y=0}\simeq 2-2.5~{
m nb}$$
 (cen. sc. Tevatron 5 nb) $d\sigma/dy(pp\to pp\Upsilon)|_{y=0}\simeq 100~{
m pb}$ (cen. sc. LHC 31 pb)

• can
$$R = \frac{d\sigma(P O)}{d\sigma(\gamma P)} > 1$$
 ?

$$R\sim 1$$
 but for $t_A,t_B>0.25\,{\rm GeV^2}$ $R>1$ and $d\sigma(P~O)$ still visible

 $\gamma~P~{
m decreases} \sim 200~{
m times}$ and P-O only $\sim 10~{
m times}$

Corrected estimates cntd

ullet Υ hadroproduction at LHC in an "asymmetric kinematics" forward proton spectr. FP420: proton energy and trans. momenta with high accuracy \sim 1%

$$\rightarrow x_A \approx 0.01$$
 and $x_B = m_\Upsilon^2/(sx_A) \simeq 5 \cdot 10^{-5}$

 $y_{\Upsilon} = 1/2 \log(x_A/x_B) \simeq 2.7$ should be possible to detect in the $\mu^+\mu^-$, proton p_B not detected

 $x_A>>x_B\to \mathcal{M}_{OP}$ and $\mathcal{M}_{\gamma P}$ enhanced by $(x_A/x_B)^\lambda\approx 6$ wrt \mathcal{M}_{PO} and $\mathcal{M}_{P\gamma}$

using difference in l^2 -dependence of \mathcal{M}_{OP} and $\mathcal{M}_{\gamma P}$ one can filter out partially $\mathcal{M}_{\gamma P}$

Conclusions or our recipe to find odderon

- Measure exclusive processes $p \, p \to p \, p \, J/\Psi$ and $p \, p \to p \, p \, \Upsilon$
- Make different cuts on $t_{A,B}$ of two outgoing protons
- Compare P O contribution with γ P one and attempt to find where $\sigma(PO) > \sigma(\gamma P)$