Diffractive TT° production, chiral symmetry & the odderon (C. Ewerz & O. Nachtmann, 2006)

- 1 Introduction
- 2 Chiral symmetry
- 3 Axial current production
- 4 From axial current to pion production
- 5 Conclusions

1 Introduction

The odderon was introduced more than 30 years ago (Lukaszuk, Nicolescu, 1973; Joynson et al. 1975). odderon: C = P = -1 exchange object in high energy scattering. So far there is only weak experimental evidence for an odderon from pp / pp elastic scattering at $\sqrt{s} = 53 \text{ GeV}$, $|t| \approx 1.3 \text{ GeV}^2$.

There are by now many suggestions to look for the odderon in other reactions.

We are concerned here with
diffractive
$$\pi^{\circ}$$
 photo & electroprod.
 $\chi^{(*)}(q) + p(p) \rightarrow \pi^{\circ}(q') + p(p'),$
 $\chi^{*}(q) + p(p) \rightarrow \pi^{\circ}(q') + \chi(p').$
 $(X e.g. N^{*})$
Schäfer, Mankiewicz, O.N., 1991
Barakhovsky et al. 1991
Kilian & O.N. 1998
* Berger et al. 1999
Berger et al. 2000
Donnachie, Dosch, O.N. 2006

Our original cross section estimate turned out to be too large compared to experiment: $\mathcal{O}(\gamma p \rightarrow \pi^{\circ} N^{*})$ $\begin{pmatrix} \approx 300 \text{ nb theory } * \\ < 49 \text{ nb H1 exp.} \end{pmatrix}$

 $\chi^{(*)}(C=-1)$ $\pi^{\circ}(C=+1)$ P p,X

(read all diagrams from right to left!)

2 <u>Chiral symmetry</u> Quark fields and axial currents $\psi(x) = \begin{pmatrix} u(x) \\ d(x) \end{pmatrix}$

$$A^{a}_{\mu}(x) = \overline{\psi}(x) \gamma_{\mu} \gamma_{5} \frac{\overline{\tau}_{a}}{2} \psi(x)$$
$$a = 1, 2, 3$$

PCAC relation

$$\partial_{\lambda} A^{a\lambda}(x) = \frac{f_{\pi} m_{\pi}^{2}}{\sqrt{2}} \phi^{a}(x)$$

 $f_{\Pi} \cong 130 \text{ MeV}$, pion decay constant $\phi^a(x)$ is a correctly normalised pion field operator.

PCAC relates TT° and axial current production $\chi^{(*)}(q,\nu) + p(p) \rightarrow \pi^{\circ}(q') + p(p')$ $m'(\pi^{\circ}; q', p, q)$ $\chi^*(q,\nu) + p(p) \longrightarrow \mathcal{A}^{3}(q',\mu) + p(p')$ m^m(A³; 9', p, 9) $g^2 = -Q^2 \leq 0$, $g^2 \leq m_T^2$ $\mathcal{M}^{\nu}(\pi^{\circ}; 2', p, 2) = \frac{2\pi m_{p} \sqrt{2}}{f_{\pi} m_{\pi}^{2}}$ $\left(-2^{\prime^{2}} + m_{\pi}^{2}\right) i 2'_{\mu} \mathcal{M}^{\mu\nu}(A^{3}; 2', p, 2)$

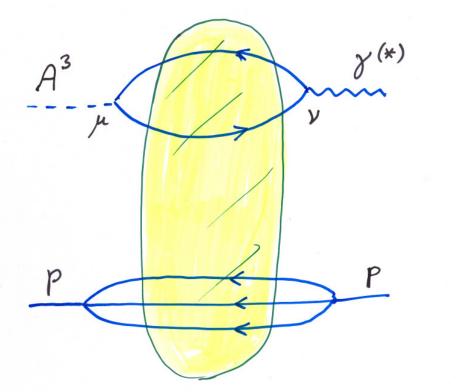
3 Axial current production

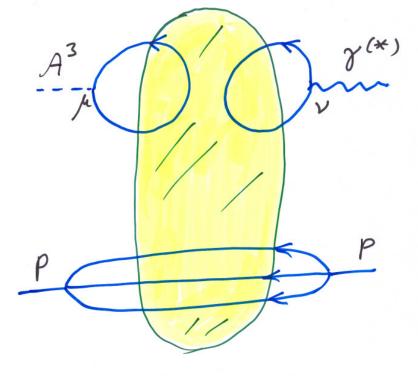
The analysis is similar to the one of Compton scattering (C. Ewerz & O.N. 2006)

- use LSZ formula to relate the amplitude to Green's functions
- represent Green's functions as functional integrals over quark and gluon degrees of freedom
- integrate out the quark degrees
 - of freedom \implies guark skeleton diagrams
- select the quark skeleton diagrams which are expected to be leading at high energies, that is, the odderon exchange diagrams

(a)

(6)





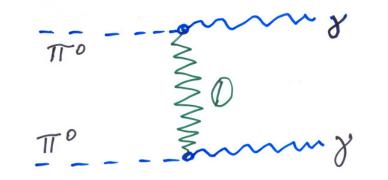
Odderon exchange diagrams for $\chi^{(*)} p \rightarrow A^3 p$ — quark prop. in given gluon pot.; (integration over all gluon pot. 4 From axial current to pion production Take the divergence in diagrams (a) and (b): multiplication with 2'n, resp. derivative 2" At guark level: $\partial^{\mu} A_{\mu}^{s} = i \{ m_{u} \overline{u} \gamma_{5} u - m_{d} d \gamma_{5} d \}$ This gives one factor mg in the divergenc amplitude. By explicit inspection one finds that the loops in (a) and (b) give a further factor mg. • The divergence amplitude is proportional to $(m_g)^2$ (g = u, d)

From the theory of chiral symmetry we know: $m_{\Pi}^2 = 2B \frac{1}{2}(m_u + m_d)$ $B = -\frac{2}{f_{T}^{2}} \langle 0 | \overline{u}(x) u(x) | 0 \rangle \approx 1800 \, \text{MeV}$ $Ampl(\chi^*p \to \pi^o p) \sim \frac{1}{m_{\pi}^2} Ampl(\chi^*p \to \mathcal{J}^{\mathcal{H}}_{\mathcal{A}_{\mu}} p)$ $\sim \frac{1}{m_{T}^{2}} m_{T}^{2} \propto m_{T}^{2}$ • In the chiral limit, $m_{\pi}^2 \rightarrow 0$, the amplitude for π° production via odderon exchange vanishes

5 Conclusions

- Chiral symmetry leads to a suppression of odderon exchange diagrams for $\chi^{(*)} p \longrightarrow \pi^{\circ} \chi_{diffr.}$
 - Numerical estimate (Donnachie, Dosch, O.N. 2006):

• A large suppression is predicted for $\chi \chi \longrightarrow \pi^0 \pi^0$



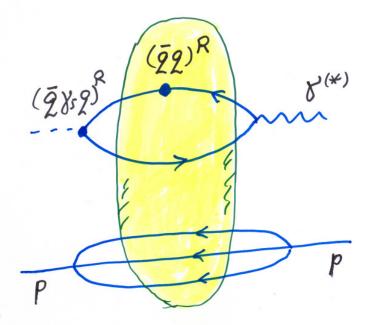
End result, everything properly renormalised:

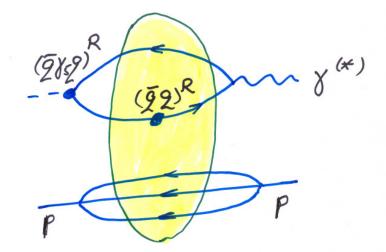
$$\begin{split} \mathcal{M}^{\nu}(\pi^{\circ}; 2', p, 2) &= m_{\pi}^{2} \frac{\pi m_{p}}{f_{\pi} B^{2} \sqrt{2}} \quad i(2'^{2} - m_{\pi}^{2}) \\ & \left\{ - n_{u}^{2} C^{(u)\nu}(2', p, 2) + n_{d}^{2} C^{(d)\nu}(2', p, 2) \right\} \end{split}$$

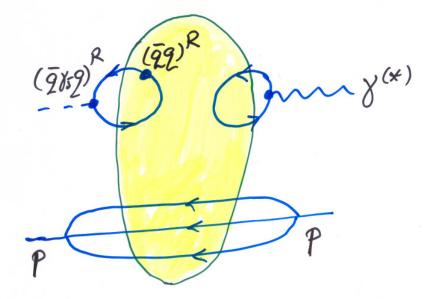
$$\pi_{u} = \frac{2m_{u}}{m_{u} + m_{d}} \cong 0.6 , \quad \pi_{d} = \frac{2m_{d}}{m_{u} + m_{d}} \cong 1.4$$

$$(2\pi)^{y} S^{(y)}(p'+q'-p-q) C^{(g)}(q',p,q) = -\frac{1}{2\pi m p} \int dx dx' d'z$$

 $e^{iq'x'-iqx} \langle p(p')|T^{*}(\bar{q}(x')\gamma_{5}q(x'))^{R}(\bar{q}(z)q(z))^{R}J_{em}(x)|p(p)\rangle$







Diagrams for the correlation function

(⁽²⁾^(2', p, 2)

(g = u,d)