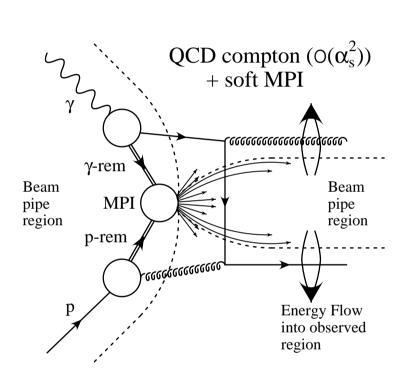
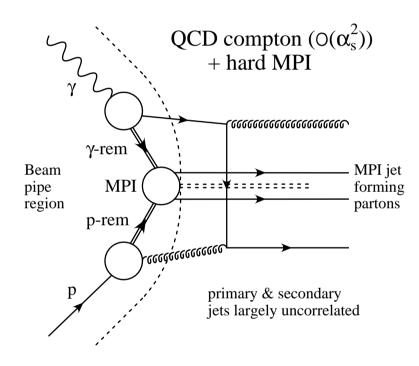

Multi-parton interactions & the underlying event

Tim Namsoo - DESY

XII th International Conference on Elastic and Diffractive Scattering EDS07 (Blois Workshop), 21^{st} - 25^{th} May 2007, DESY, Hamburg.

- Introduction
- Motivation
- HERA: Underlying event in γp
- HERA: Underlying event in DIS
- ullet Tevatron: Underlying event in par p
- LHC?: Underlying event in pp
- Summary

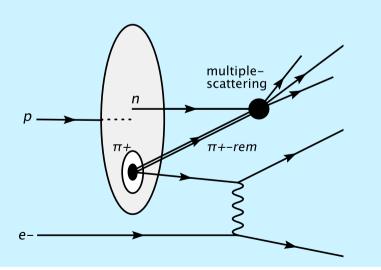



Introduction

- What is the underlying event? (a working definition:)
 - all energy flow not associated with the primary process
- What is the primary process?!
 - a parton-parton interaction, which (beyond PDFs) is completely insensitive to the incoming particles and beam remnants.
 - includes all coherent radiation (to all orders) associated with that interaction
 - this assumes perfect universality the source of the partons irrelevant.
- What else could affect or contribute to the observable energy flow?
 - secondary remnant-remnant interactions multi-parton interactions (MPIs)
 - multiple-scattering as a primary parton re-scatters off the remnants
 - any other environmental effects that might affect primary scattered partons.
- In this talk we shall talk exclusively about MPIs and the underlying event

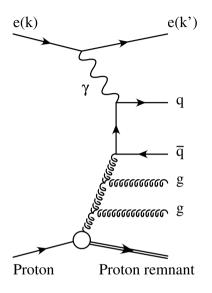
Introduction - MPIs

MPIs may range from being v. soft ("underlying event") upto hard (jet forming)

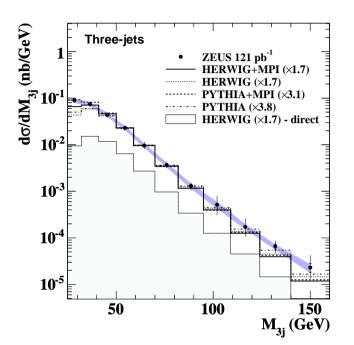


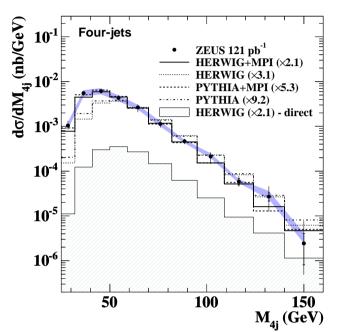
- thus possible MPI signatures (softest \Rightarrow hardest) are a low- E_T pedestal, increased production of (incoherent) mini-jets or an excess of 4-jet events.
- experimentally, it's difficult to differentiate MPIs from HO pQCD corrections

Motivation

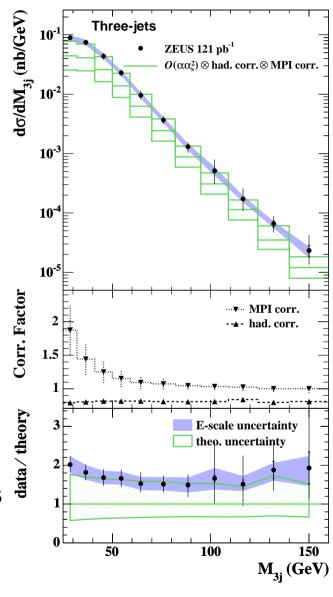

- MPIs can interfere with many types of physics analysis so must be understood:
 - they reduce rapidity gap survival probability
 - they affect isolation criteria (e.g. for muons)
 - they lead to larger charged/particle multiplicities
 - affect jet profiles/pedestals and increase jet energy scale
 - potentially increase jet rates and affect jet angular correlations
- Multiple-scattering affects:
 - leading baryon E_T spectra

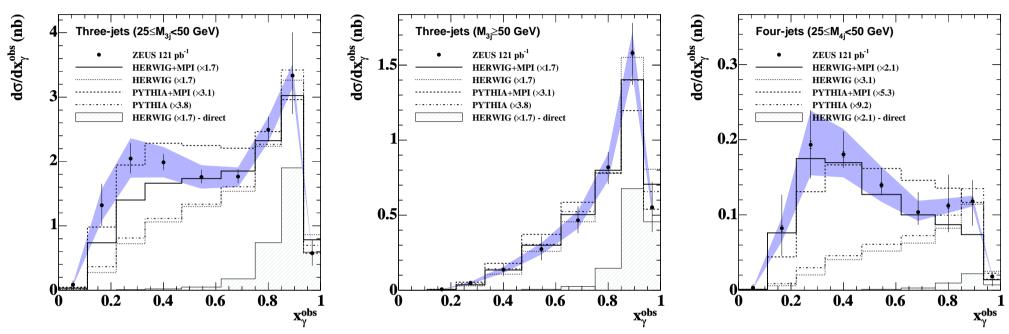
- And MPIs at the LHC will be <u>far more</u> prevalent
- to find (most) new physics must understand QCD background, including:
 - the primary interaction...
 - ...plus the secondary interactions...
 - ...from the multiple particle interactions per bunch crossing!
- MPIs affect what analyses can be done and...
- what triggering strategies should be employed
- \bullet MPIs may lead to a greater understanding of p e.g. multi-parton correlated SFs?


Underlying event in γp - multi-jets


- ullet Here we study: $\gamma p
 ightarrow 3+$ or 4+ jets $(E_T^{
 m jet} > 6~{
 m GeV})$
- \bullet γ may act like a point-like (direct) or composite object (resolved)
- MPIs only present in resolved (hadron-hadron-like) process
- Multi-jets generated by QCD processes (see figure right)...
- ...and hard-MPIs? Note: soft underlying event changes jet energy scale and so, given some $E_T^{\rm jet}$ criteria, affects jet rates.

- Variables looked at:
 - M_{nj} : invariant mass of the n-jet system. Compared to MCs with and without MPIs and LO pQCD.
 - $-x_{\gamma}^{obs}$: which approximates x_{γ} , the fraction of γ 's momentum transferred to the hard interaction (i.e. the jets). At LO, $x_{\gamma}=1$ (direct) & $x_{\gamma}<1$ (resolved) however ambiguous at HOs. Compared to MCs with and without MPIs
- events studied in two M_{nj} regions: (25 $\leq M_{nj} <$ 50 GeV) & ($M_{nj} \geq$ 50 GeV)


Underlying event in γp - multi-jets



- ullet MC without MPIs fails to describe low M_{nj} regions
- adding MPIs helps description of M_{nj} (see M_{4j})
- \bullet highest order pQCD in γp only LO for 3-jet process
- shown here corrected for hadronisation and MPI effects
- ullet largely describes M_{3j} data but theo. uncertainty large
- description greatly improved by MPI corrs.

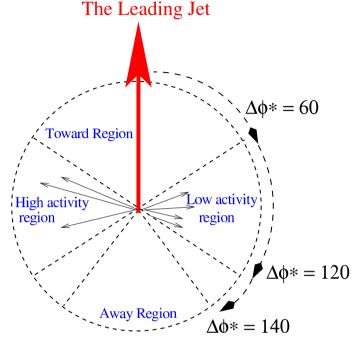
Underlying event in γp - multi-jets

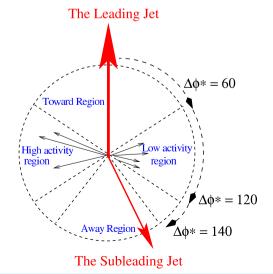
- all MC models describe high mass data reasonably well.
- MCs without MPIs don't describe low x_{γ}^{obs} region at low mass.
- the discrepancy between the MC without MPIs and the data is larger for 4-jets.
- introducing MPIs into the MCs improves the description.
- note: predicted influence of MPIs very sensitive to tunable parameters in models.
- low mass 4-jet data some of the most MPI sensitive ZEUS data. However...
- …always issue: really MPIs or HO effects not modelled by parton-showers?

Underlying event in DIS - mini-jets

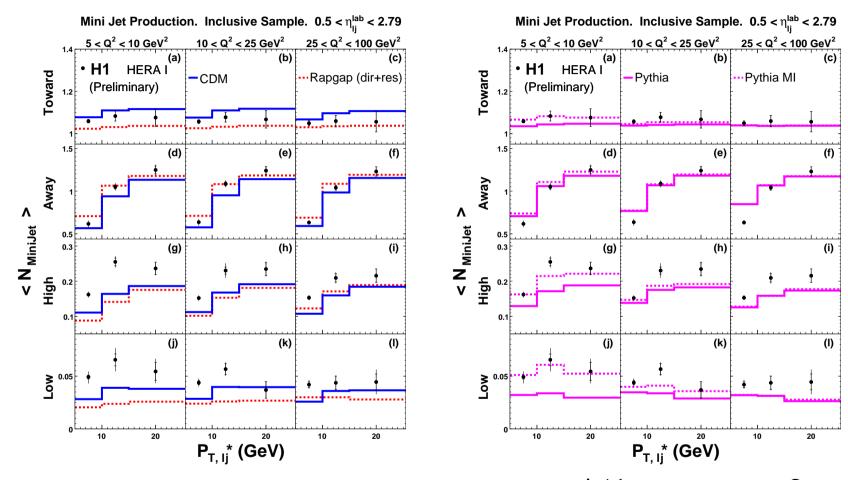
• resolved processes suppressed by virtuality, Q^2 .

are we even sensitive to MPIs/underlying event in DIS?

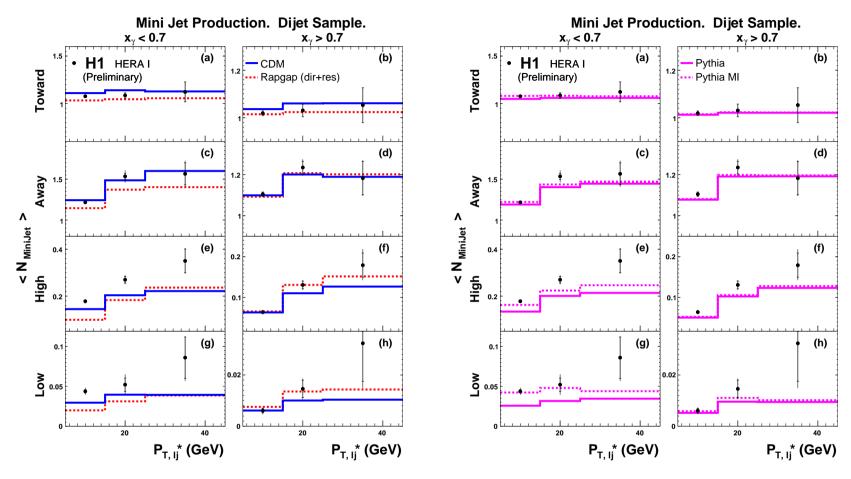

• Strategy:


transverse re-

- select DIS events (5 $< Q^2 < 100 \text{ GeV}^2$) event.
- select hardest jet in HCM ($P_T^{\rm jet} > 5~{\rm GeV}$)
- define 4 regions (see figure right)
- $-\sum$ of particle E_T defines low/high activity regions
- measure average mini-jet multiplicity, $\leq N_{minijet} > 1$.
- where mini-jets have $P_T^{\text{jet}} > 3 \text{ GeV...}$

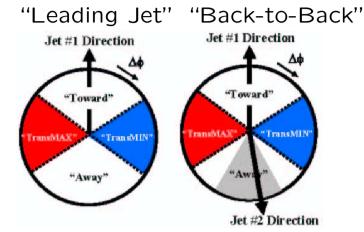

- ...and
$$< N_{
m minijet}> = rac{\sum^{N_{
m events}} N_{
m minijet}}{N_{
m events}}$$

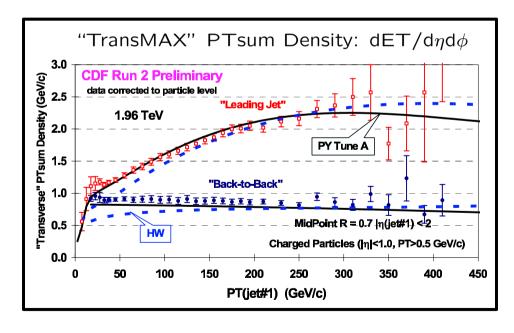
- transverse regions sensitive to incoherent energy flow
- can further reduce coherent radiation by requiring backto-back subleading jet (see figure right)
 - select dijet events ($P_T^{\text{jet}} > 5 \text{ GeV}$)
 - with subleading jet in "away region"
 - repeat procedure...

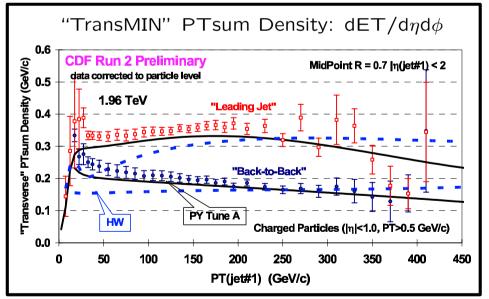


Underlying event in DIS - mini-jets (inclusive)

- $< N_{\text{minijet}} > (P_T^{\text{jet1}})$ in the 4 regions. Shown for high η^{jet1} region in 3 Q^2 bins.
- expect larger resolved contribution in high $\eta^{\rm jet1}$ (forward) region.
- all MC models describe the "towards" and "away" regions reasonably well.
- MPIs improve description of "low" and "high" regions at low Q^2 but not at mid Q^2

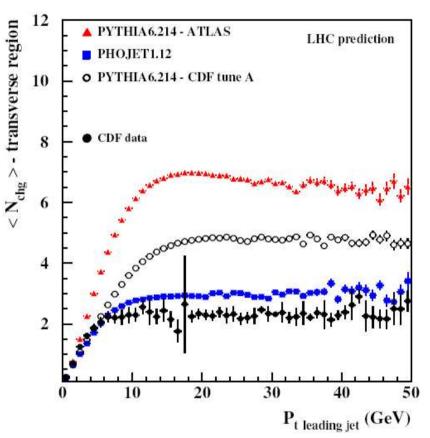

Underlying event in DIS - mini-jets (dijets)

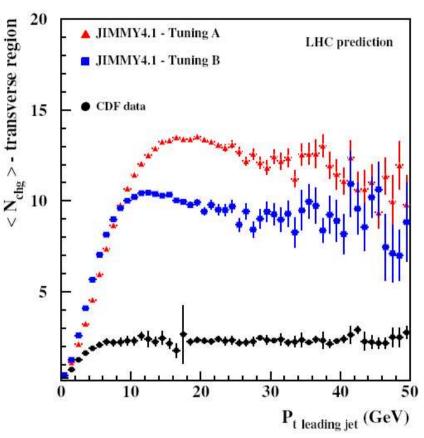



- ullet $< N_{
 m minijet} > (P_T^{
 m jet1})$ in the 4 regions in two x_γ regions.
- "towards" and "away" regions again largely described by all MC models
- ullet more activity in "low" and "high" regions at low x_γ (resolved enriched)
- low x_{γ} description generally improved by the inclusion of MPIs

Underlying event in $par{p}$ - transverse P_T

- Tevatron underlying event most relevant for LHC
- analysis of "transverse" regions (see figure right)
- ullet plot hadronic P_T sums compared to MC models
- HERWIG (no MPIs) below the low-PT(jet#1) data
- best description by PYTHIA with MPIs ("Tune A")





R. Field [CDF Collab.], AIP Conf. Proc. 828 (2006) 163

Underlying event at the LHC?

What will the underlying event be like at the LHC? Can we say anything presently?

- Clearly, LHC extrapolations based on tunes to current data disagree
- DISCONTAINLY OF ITS DUTHE data will provide an interesting test for the current models
- but beyond just being a background for physics it will be interesting if MPI events can be used constructively to gain further insight into e.g. proton structure.

Summary

- the topic of MPIs is presently very relevant. From practical considerations:
 - they interfere with what physics analyses can be done
 - they interfere with what triggering strategies can be employed
- at HERA, MPIs are possible in resolved photon interactions
- resolved processes suppressed with increasing Q^2 and x_{γ} .
- low- Q^2 multi-jet γp data suggestive of large MPI contribution at low M_{nj} & low x_γ .
- furthermore, influence of MPIs predicted to grow with jet multiplicity.
- HERA DIS mini-jet data also suggestive of MPIs at lowish- Q^2 (upto $\mathcal{O}(10)$ GeV²)
- however, always question whether MPIs or HO effects/soft physics?
- at the Tevatron, the picture is the same.
- ullet particle P_T sums are in excess of MC prediction without MPIs
- description can be remedied by the inclusion of MPIs
- But as for the LHC, extrapolations to the relevant energies have large uncertainties
- LHC data will provide an interesting test of the models
- but beyond just being a background for physics, it will be interesting if MPI events can be used constructively to gain further physical insights