Measurement of the cross section and the single transverse spin asymmetry in very forward neutron production from polarized pp collisions at RHIC

Manabu Togawa for the PHENIX collaboration.

RIKEN Nishina Center / RBRC Special Postdoctoral Researcher

Outline

- Physics motivation
- Measurement of forward neutron at PHENIX
- Experimental setup
- Analysis procedure
- Result of the cross section
- Very forward case
- Results of the single transverse spin asymmetry
- ϕ and x_{F}-dependence
- Comparing tagged w/ or w/o charged particles
- Charged particles tagged with forward neutron
- Summary

Motivation 1 : Discovery of large A_{N} in forward neutron production at RHIC.

Polarized pp collision in sqrt(s) $=200 \mathrm{GeV}:$ IP12 Collision Point

EM Cal

Charged veto (plastic scinti.)

Motivation 1 : Discovery of large A_{N} in forward neutron production at RHIC.

Polarized pp collision in sqrt(s) $=200 \mathrm{GeV}:$ IP12 Collision Point

Submitted to PLB : hep-ex/0610030

Motivation 1 : Discovery of large A_{N} in forward neutron production at RHIC.

Polarized pp collision in sqrt(s) = 200GeV : IP12 Collision Point

Hadron Cal

Post shower counter Gamma veto (plastic scinti.)

Lead block

Submitted to PLB : hep-ex/0610030

Motivation 2 : Cross section measurements.

- ISR experiment
- pp sqrt(s)=30~63GeV.
- cross section of forward neutron production has peak at high x_{F}.
- Scaling by x_{F}, not sqrt(s).
- H1 and ZEUS experiments
 - ep sqrt(s)=300 GeV.
- Also have forward peak
- Pion structure fluctuation in proton.
\rightarrow Well described by One Pion Exchange (OPE) model.

- Does Feynman scaling hold when going to RHIC energy?
- From the ISR result, C.S. are described well by x_{F} scaling at 30<sqrt(s)<63 GeV.
- Forward neutron C.S. has peak structure and it is well described by pion exchange model.
- What is the mechanism of neutron asymmetry?
- pion exchange model
- Asymmetry can appear due to the interference of spin flip.
- Twist-3 model, Siverse effect, Collins effect ...
- Does Feynman scaling hold when going to RHIC energy?
-From the ISR result, C.S. are described well by x_{F} scaling at $30<$ sqrt(s)<63 GeV.
- Forward neutron C.S. has peak structure and it is well described by pion exchange model.
- What is the mechanism of neutron asymmetry ?
- pion exchange model
- Asymmetry can appear due to the interference of spin flip.
- Twist-3 model, Sivers effect,
\rightarrow PHENIX measurement Collins effect ...

Forward neutron measurement @ RHIC-PHENIX

PHENIX

Determination of the

 polarized gluon distribution function is main motivation of spin physics- Central Arms
- $|\eta|<0.35, \Delta \phi \sim \pi$
- $\gamma, \pi^{0}, \mathrm{e}, \pi^{+-}$- identified
- Muon Arms
- $1.2<|\eta|<2.4$
- μ-identified
- BBC, ZDC
- Luminosity monitor
- Minbias trigger (BBC)

Interesting physics in forward area!

Setup

Schematic view from simulation.

- GEANT3 (Geisha)
- From the pythia simulation, Main
backgrounds are gamma and proton.
Collision point 1800 cm

Setup

Schematic view from simulation.

- GEANT3 (Geisha)
- From the pythia simulation, Main
backgrounds are gamma and proton.

Setup

Schematic view from simulation.

- GEANT3 (Geisha)
- From the pythia simulation, Main backgrounds are gamma and proton.

Setup

Schematic view from simulation.

- GEANT3 (Geisha)
- From the pythia simulation, Main backgrounds are gamma and proton.

Setup

Schematic view from simulation.

- GEANT3 (Geisha)
- From the pythia simulation, Main backgrounds are gamma and proton.

Setup

Schematic view from simulation.

- GEANT3 (Geisha)
- From the pythia simulation, Main backgrounds are gamma and proton.

Setup

Schematic view from simulation.

- GEANT3 (Geisha)
- From the pythia simulation, Main backgrounds are gamma and proton.

Same detector is in opposite side.
\rightarrow Measure forward

(Shower Max Detector)

Neutron position can be decided by centroid method.

Analysis outline

- Data set
- In this analysis, sqrt(s)=200 GeV data from 2005 is used. The data is collected by single neutron trigger w/ or w/o Min. Bias. trigger.
- Min. Bias. is defined as detecting charged particles in both BBC's (Beam-Beam-Counter : $3.0<|\eta|<3.9$)

Analysis outline

- Data set
- In this analysis, sqrt(s)=200 GeV data from 2005 is used. The data is collected by single neutron trigger w/ or w/o Min. Bias. trigger.
- Min. Bias. is defined as detecting charged particles in both BBC's (Beam-Beam-Counter : $3.0<|\eta|<3.9$)
- Calibration
- ZDC : Look at the single-neutron peak at heavy ion data.
- SMD : Relative gain correction is done by cosmic-ray data.

Analysis outline

- Data set
- In this analysis, sqrt(s)=200 GeV data from 2005 is used. The data is collected by single neutron trigger w/ or w/o Min. Bias. trigger.
- Min. Bias. is defined as detecting charged particles in both BBC's (Beam-Beam-Counter : $3.0<|\eta|<3.9$)
- Calibration
- ZDC : Look at the single-neutron peak at heavy ion data.
- SMD : Relative gain correction is done by cosmic-ray data.
- Simulation (GEANT3 with pythia v. 6220 or single particle generator)
- Background and efficiency after neutron ID cut.
- Unfold the neutron energy.
- Smearing effect of asymmetry caused by position cut and resolution.

Cross section

p_{T} distribution is
assuming ISR result

Cross section of forward neutron production (integrated in $0<\mathrm{p}_{\mathrm{T}}<0.11 \mathrm{x}_{\mathrm{F}}(\mathrm{GeV} / \mathrm{c})$)

Integrated p_{T} area : $0<p_{T}<0.11 x_{F} \mathrm{GeV} / \mathrm{c}$ in each point.

Cross section result is consistent with ISR data. No evidence for violation of x_{F} scaling at higher energy.

ϕ-dependence of A_{N}

- Smearing effect is evaluated by simulation.
- For asymmetry calculation, square root formula is used. $\phi=\pi / 2$

$$
A_{N} \equiv \frac{\sigma_{\uparrow}-\sigma_{\downarrow}}{\sigma_{\uparrow}+\sigma_{\downarrow}} \approx \frac{1}{\operatorname{Pol} .} \frac{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}-\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}+\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}
$$

Pol.~48\%

Forward Neutron Asymmetry ϕ distribution ZDCN|S trigger

Without Min. bias. (Hits in BBC NOT required)

Forward Neutron Asymmetry ¢ distribution Minbias\&(ZDCN|S) trigger
 $B B C(3.0<e t a<3.9)$ required

ϕ-dependence of A_{N}

- Smearing effect is evaluated by simulation.
- For asymmetry calculation, square root formula is used. $\phi=\pi / 2$

$$
A_{N} \equiv \frac{\sigma_{\uparrow}-\sigma_{\downarrow}}{\sigma_{\uparrow}+\sigma_{\downarrow}} \approx \frac{1}{\operatorname{Pol} \cdot} \frac{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}-\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}+\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}
$$

Pol.~48\%
xpos

x_{F}-dependence of A_{N}

- Smearing effect is evaluated by simulation.
- For asymmetry calculation, square root formula is used.

$$
A_{N} \equiv \frac{\sigma_{\uparrow}-\sigma_{\downarrow}}{\sigma_{\uparrow}+\sigma_{\downarrow}} \approx \frac{1}{\text { Pol. }} \frac{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}-\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}+\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}
$$

Pol.~48\%

Neutron asymmetry X_{F} distribution with single neutron trigger

Estimated mean p_{T} are calculated by simulation assuming ISR p_{T} distribution.

x_{F}	Estimated mean $\mathrm{p}_{\mathrm{T}}(\mathrm{GeV} / \mathrm{c})$
$0.4 \sim 0.6$	0.088
$0.6 \sim 0.8$	0.118
$0.8 \sim 1.0$	0.144

x_{F}-dependence of A_{N}

- Smearing effect is evaluated by simulation.
- For asymmetry calculation, square root formula is used.

$$
A_{N} \equiv \frac{\sigma_{\uparrow}-\sigma_{\downarrow}}{\sigma_{\uparrow}+\sigma_{\downarrow}} \approx \frac{1}{\text { Pol. }} \frac{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}-\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}+\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}
$$

Pol.~48\%

Neutron asymmetry x_{F} distribution with neutron trigger \& MinBias

$\stackrel{<}{\mathbb{Z}_{0.1}} \underset{0}{\text { PHENIX preliminary }}$

Estimated mean p_{T} are calculated by simulation assuming ISR p_{T} distribution.

x_{F}	Estimated mean $\mathrm{p}_{\mathrm{T}}(\mathrm{GeV} / \mathrm{c})$
$0.4 \sim 0.6$	0.088
$0.6 \sim 0.8$	0.118
$0.8 \sim 1.0$	0.144

How about charged particles in BBC ?

- 2 identical parts
- BBC-north and -south
- Quartz Cherenkov counter
- Count charged particles.
- 64 segments each.

A_{N} of charged particles.

- Asymmetry is 0 if data is selected by BBC only.
- Finite asymmetries are shown tagged with forward neutron.
- Opposite direction as neutron (2.28 $\pm 0.55 \pm 0.10)^{*} 10^{-2}$
- Same direction as neutron (-4.50 $\pm 0.50 \pm 0.22)^{*} 10^{-2} 9 \sigma$

PHENIX preliminary
\rightarrow Big correlation between forward charged particles and neutron!

proton
N (neutron)
Y: charged particles

BBC multiplicity

- Forward BBC multiplicity is lower if tagged with forward neutron.
- Can be explained by OPE.
- $\pi \mathrm{p}$-scattering occurs with lower momentum π.

Overall picture for forward measurements at PHENIX

Compare with pion exchange model

© Forward peak
(:) Neutron asymmetry (pion exchange)
© N. of charged particles in BBC
Forward < Backward
(Forward energy will be lower)
? Charged particles asymmetry in BBC

$$
\left(\mathrm{N}^{*}\left(\Delta^{*}\right) \rightarrow \mathrm{n}+\mathrm{X}\right)
$$

Overall picture for forward measurements at PHENIX

Compare with pion exchange model

() Forward peak
(:) Neutron asymmetry (pion exchange)
© N. of charged particles in BBC
Forward < Backward
(Forward energy will be lower)
? Charged particles asymmetry in BBC
Deck model (Phys.Rev.D15:1903,1977) $\left(\mathrm{N}^{*}\left(\Delta^{*}\right) \rightarrow \mathrm{n}+\mathrm{X}\right)$

Summary

- The cross section and the single transverse spin asymmetries of forward neutron production in sqrt(s)=200 GeV polarized $p p$ collision are measured at RHIC-PHENIX.
- Cross section (Very forward, $0<p_{T}<0.11 \mathrm{x}_{\mathrm{F}} \mathrm{GeV} / \mathrm{c}$)
- It is consistent with ISR data at $\mathrm{p}_{\mathrm{T}} \sim 0(\mathrm{GeV} / \mathrm{c})$.
- No evidence for violation of X_{F} scaling.
- A_{N} of forward neutron
- Analyzing power of forward neutron tagged w/ charged particles is lager than w/o them.
- Negative asymmetry, flat x_{F}-dependence.
\leftarrow Theoretical calculation is very welcome.
- A_{N} of charged particles
- Finite value if forward neutron is tagged.
- Forward BBC multiplicity is lower if forward neutron is tagged.

Future analysis

- p_{T}-dependence
- Important parameter same as x_{F} (of course t for the OPE model).
- It will be studied by r-dependence.

$$
x_{F} \sim \frac{E_{n}}{E_{p}} \quad t \sim-\frac{p_{T}^{2}}{x_{F}}-\frac{1-x_{F}}{x_{F}}\left(m_{n}^{2}-x_{F} m_{p}^{2}\right)
$$

- Other correlation tagged with forward neutron.
- A_{N} of charged particles tagged with forward neutron.

We can see finite asymmetry in other energy RUNs !

Forward neutron LR asymmetry in $\sqrt{s}=62.4 \mathrm{GeV}$

Forward neutron LR asymmetry in $\sqrt{5}=410 \mathrm{GeV}$

\rightarrow go to 500 GeV

backup

Energy resolution

Energy response estimated by almulation

Energy resolution estmatad by almulation

Position resolution

$$
\sigma_{\text {total }}=\frac{\int g_{1}(x) d x \sigma_{1}+\int g_{2}(x) d x \sigma_{2}}{\int g_{1}(x) d x+\int g_{2}(x) d x}
$$

Edge effect

Horizontal scan (Response)

Smearing effect for ϕ-asymmetry

Smeared to 7.4\%

Event ratio.

- For Left-Right asymmetry (RUN\#178606), after neutron ID,
- BBC hits \& ZDC hit : 3167520
- ZDC hit : 16576168
$\rightarrow \sim 5$ times higher for neutron detection.

Beam gas study.

Counts for each crossing after applying neutron ID and acceptance cut.

We can see finite asymmetry in other energy RUN !

$$
A_{N} \equiv \frac{\sigma^{\uparrow}-\sigma^{\downarrow}}{\sigma^{\uparrow}+\sigma^{\downarrow}}=\frac{1}{\text { Pol. }} \frac{N^{\uparrow}-R N^{\downarrow}}{N^{\uparrow}+R N^{\downarrow}} \quad R \equiv \frac{L^{\uparrow}}{L^{\downarrow}}
$$

Horizontal scan

Forward neutron LR asymmetry in $\sqrt{s}=62.4 \mathrm{GeV}$

Forward neutron LR asymmetry in $\sqrt{5}=410 \mathrm{GeV}$

Shower Shape study

- Shower shape

SMD hit distribution vs. scintillator position in 1 event (y-pos)

Fill(scinti.pos[i] - ypos, smd_ene[i]/SumY);

Position decided by centroid method

- Looking by each energy and N of scintillator hits.
- PF (peak fraction)
- Defined as smd_ene[peak] /Sumy

Shower Shape for x

Shower Shape for y

SSy yposw=5 50czdc_enec60

SSy yposw=8 50<zdc_ene<60

Peak fraction for x

Peak fraction for y

After the smearing.

SSx xposw=7 $50<z d c_{\text {_ene }}<60$

PFx xposw=7

Cross section calculation

- The total cross section with PHENIX neutron cut. is estimated.
$-p_{T}$ is not evaluated from our data. As simulation input, ISR result is assumed.
- In this analysis, radius<2cm from the collision point (1800 cm) is calculated.

$$
\rightarrow 1.1 \mathrm{mrad}: 0<\mathrm{p}_{\mathrm{T}}<0.11 \mathrm{x}_{\mathrm{F}} \mathrm{GeV} / \mathrm{c}_{\circ}
$$

PHENIX data.
\downarrow comparing
ISR data is converted to current cut. ($0<\mathrm{p}_{\mathrm{T}}<0.11 \mathrm{x}_{\mathrm{F}} \mathrm{GeV} / \mathrm{c}$)
$E \frac{d^{3} \sigma}{d^{3} p}=d \sigma\left(\frac{1}{2 \pi}\right)\left(\frac{x_{F}}{d x_{F}}\right)\left(\frac{1}{p_{T}}\right)\left(\frac{1}{d p_{T}}\right) \rightarrow \frac{d \sigma}{d x_{F}}=(2 \pi)\left(\frac{1}{x_{F}}\right) \int_{\text {Acc. }} E \frac{d^{3} \sigma}{d^{3} p} p_{T} d p_{T}$
t-range

$$
\begin{aligned}
& x_{F}=\frac{E_{n}}{E_{p}} \\
& t \sim-\frac{p_{T}^{2}}{x_{F}}-\frac{1-x_{F}}{x_{F}}\left(m_{n}^{2}-x_{F} m_{p}^{2}\right)
\end{aligned}
$$

$$
\left(m_{p}, 0,0, E_{p}\right)
$$

ISR p_{T} distribution is assuming.

x_{F}	$\left\langle\mathrm{p}_{\mathrm{T}}\right\rangle(\mathrm{GeV} / \mathrm{c})$	$\mathrm{t}\left(\mathrm{GeV}^{2}\right)$
$0.4 \sim 0.6$	0.088	-0.458
$0.6 \sim 0.8$	0.118	-0.134
$0.8 \sim 1.0$	0.144	-0.033

Systematic error for C.S.

- Systematic error in calibration
- Energy calibration ~5\%
- SMD relative calibration (it is including in SMD cut eff)
- Trigger bias correction. < 10\%
- Systematic error in simulation
- Acceptance few \% from pt distribution by SMD pos cut.
- SMD cut eff. $\sim 3 \%$
- Neutron ID
- SMD shape match. $\sim 3 \%$
- Forward counter match. $\sim 5 \%$
- Background estimation. apply 100\% error for BG ratio.
- Mainly from K0 and proton
- For cross section 8\%
- 2 particle in 1 event $\sim 5 \%$
- Systematic error in luminosity
- Cross section error 13% (22.9 mb * 0.591) for NoVtxCut
- In total
- For shape after cut : $\sim 11.6 \%$ For scaling of cross section : 17.1\%

Systematic error for phi-asym.

- Measurement: 1\%
- Bunch shuffling result is $\sim 2 \%$ of statistics, RUN5 local pol analysis note. (AN462)
- Center scan ~ 1\%
- Beam gas BG at ZDCN|S trigger : 0.2\%
- Simulation uncertainty 4.1%
- Simulation stat 2\%
- pT match : few\%
- BG estimation 3\%
- Center cut scan 2\%
- Total : 4.2\%
- Online polarization $20 \% \rightarrow$ scaling error.

Systematic error for X_{F}-asym.

- Estimation from measurement : 2\%
$-\sim 4 \%$ of statistics, by bunch shuffling.
- Center scan ~ 2\%
- Beam gas BG at ZDCN|S trigger : 0.2\%
- Unfolding : calibration (bin by bin $\rightarrow 18 p$)

$$
\cdot x_{F}: 0.4 \sim 0.6: 2.1 \% \quad 0.6 \sim 0.8: 0.3 \% \quad 0.8 \sim 1.0: 0.3 \%
$$

- Simulation uncertainty 7.8%
- BG estimation 3\%
- Position smearing estimated by center cut scan (Differences between PHENIX and flat x_{F} inputs) 7.2%
- Unfolding : linearity (bin by bin $\rightarrow 17 p$)

$$
\text { - } x_{F}: 0.4 \sim 0.6: 12.1 \% \quad 0.6 \sim 0.8: 2.1 \% \quad 0.8 \sim 1.0: 2.1 \%
$$

- Total : 8.1% of asymmetry value (not including blue term)

Calibration (ZDC)

- Neutron cainbration is done by 1 neutron peak from heavy ion

Calibration (SMD)

Relative gain of each channels are matched by cosmic ray data.

Compared with simulation data. See simulation term.

nID study using pythia input.

Correction of BG (estimation)

- With SMD cut and center cut ($\mathrm{r}<0.5$), BG are mainly K0 and proton
- From ISR paper,

The K^{0} background, which was subtracted, was assumed to be the average of $\mathrm{K}^{ \pm}$production [10]. This background amounts to about 10% at $x=0.2$ and less than 4% for $x>0.4$.

Pythia out.

$E(G e V)$	$\mathrm{K} 0(\%)$	Proton (\%)
$10-20$	16.67	11.11
$20-30$	5.97	2.99
$30-40$	4.69	2.34
$40-50$	1.75	3.59
$50-60$	1.78	4.14
$60-70$	1.50	5.00
$70-80$	1.18	1.76
$80-90$	0	2.14
$90-100$	0	9.71

Pythia out is agree KO ration with ISR data. I used BG distribution after cut from the pythia. Error will be added 100\% of this value

Neutron measurement stability

Stability $=7.65762 \mathrm{e}-06 / 4.76148 \mathrm{e}-03^{*}$ sqrt(315.5/95) $=0.3 \%$.

BBCLL1 bias study.

RUN5 pp MB looking $22.9 \pm 9.7 \mathrm{mb}$
For neutron C.S. correct BBCLL1 cut efficiency.

0.591 ± 0.05 (for maximum error) $\rightarrow 8.46 \%$

Stability of neutron peak after cut

This peak

Radius distribution for calculating asymmetry

Center cut by $\mathrm{r}>0.5 \mathrm{~cm}$

Cut radius	0.5	1.0	2.0
Real data	0.0308	$0.0320(1.039)$	$0.0341(1.107)$
sim (center)	0.0829	$0.0853(1.029)$	$0.0922(1.112)$
sim (flat)	0.0814	$0.0829(1.018)$	$0.0884(1.086)$

* () means ration to cut radius $=0.5$.

Differences of ratio will be systematic error : 2%

前方中性子測定

ISR実験

Osqrt(s)=30~63 GeV OSTAC $40 * 40 * 80 \mathrm{~cm}^{3}$ (iron) $5.5 \lambda_{1}$ res. 26\%@20GeV 19\%@30GeV OThey were placed in $0^{\circ}, 20^{\circ}, 66^{\circ}, 119^{\circ},(\pm 1) \mathrm{mrad}$ (56 m for 0°)

X_{F} scaling

One pion exchange model

Eur.Phys.J.A7:109-119,2000
B. Kopeliovich et al. Z.Phys.C73:125-131,1996

π pole

Meson cloud model

3 charge veto counters ($70 * 50 * 2 \mathrm{~cm}^{3}$)

ZEUS measurement

$\left(7 \lambda_{\mathrm{I}}\right) \quad \sigma / E=0.65 / \sqrt{E}$
$30 \mathrm{GeV} \mathrm{e}^{+} 920 \mathrm{GeV}$ proton $\sqrt{s} \sim 300 \mathrm{GeV}$

ZEUS results

S．Chekanov et al．nuclear Physics B 637 （2002）3－56

$$
\frac{d \sigma_{e p \rightarrow e^{\prime} n X}}{d x_{L} d t}=f_{\pi / p}\left(x_{L}, t\right) \sigma^{e \pi}\left(s^{\prime}\right)
$$

C．S．of neutron－tagged $\mathrm{D}^{* \pm}$
$e p$ での重クオーク生成は $\gamma \mathrm{g}$ 融合 もし交換されたパイオンと仮想光子との反応ならパ イオン内部のグルーオン構造関数が見えるはず

Scaling is unreliable

S．Chekanov et al．physics Letters B 590 （2004）143－160

BBCLL1\&(ZDCNOS)

Red: SOUTH
Blue : NORTH

No cut required. Just biased by trigger.

- Central Arms
- $|\eta|<0.35, \Delta \phi \sim \pi$
- $\gamma, \pi^{0}, \mathrm{e}, \pi^{+-}$- identified
- Muon Arms
$-1.2<|\eta|<2.4$
- μ-identified
\rightarrow Polarized gluon structure function is studied for spin physics.

