Towards a fitting procedure for DVCS at next-to-leading order and beyond

Kornelija Passek-Kumerički

"Rudjer Bošković" Institute, Zagreb

Collaboration with:

Krešimir Kumerički (Zagreb), Dieter Müller (Bochum), Andreas Schäfer (Regensburg)

12th International Conference on Elastic and Diffractive Scattering DESY, Hamburg, 21–25 May 2007

(日) (國) (필) (필) (필)

Introduction	to	GPDs
00000		

DVCS 000 Results 00000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ●

Summary

Outline

Introduction to Generalized Parton Distributions (GPDs)

Deeply virtual Compton scattering (DVCS)

Conformal Approach to DVCS Beyond NLO

Results

Choice of GPD Ansatz Size of Radiative Corrections Fitting GPDs to Data

Summary

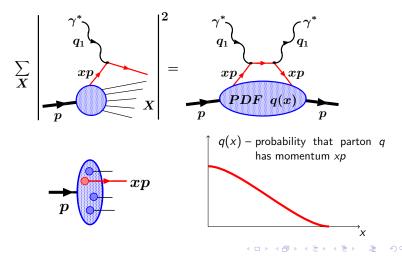
DVCS

Conformal Approach to DVCS Beyond NLO

Results Sumn

Parton distribution functions

• Deeply inelastic scattering, $-q_1^2 o \infty, \; x_{BJ} \equiv rac{-q_1^2}{2 p \cdot q_1} o {
m const}$



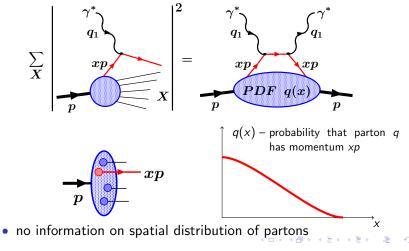
DVCS

Conformal Approach to DVCS Beyond NLO 00000

Results Summ

Parton distribution functions

• Deeply inelastic scattering, $-q_1^2 o \infty, \ x_{BJ} \equiv rac{-q_1^2}{2 p \cdot q_1} o {
m const}$



 γ

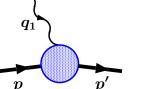
000

Conformal Approach to DVCS Beyond NLO

Results Su

Electromagnetic form factors

• Dirac and Pauli form factors:



 $F_{1,2}(t=q_1^2)$

- 白 ト - 4 同 ト - 4 回 ト - 三日

000

р'

Conformal Approach to DVCS Beyond NLO

Results Sumr

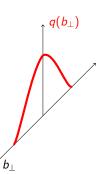
Electromagnetic form factors

• Dirac and Pauli form factors:

$$oldsymbol{q}(b_{\perp})\sim\int\mathrm{d}b_{\perp}\;e^{iq_{1}\cdot b_{\perp}}F_{1,2}(t=q_{1}^{2})$$

 q_1

р



(日)

3

 q_1

000

Conformal Approach to DVCS Beyond NLC 00000

esults Summ

x

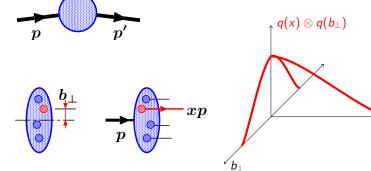
3

Electromagnetic form factors

• Dirac and Pauli form factors:

$$q(b_\perp)\sim\int\mathrm{d}b_\perp\,e^{iq_1\cdot b_\perp}{\sf F}_{1,2}(t=q_1^2)$$

▲□▶ ▲圖▶ ▲注▶ ▲注▶ -



000

Conformal Approach to DVCS Beyond NLO

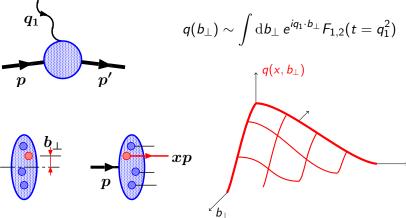
Results Sumn

x

ヘロト ヘ戸ト ヘヨト ヘヨト

Electromagnetic form factors

• Dirac and Pauli form factors:



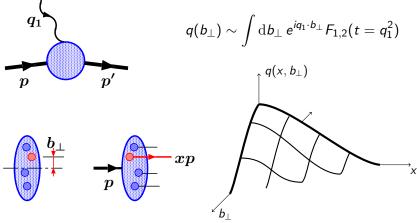
000

Conformal Approach to DVCS Beyond NLC 00000

esults Summ

Electromagnetic form factors

• Dirac and Pauli form factors:



• "skewless" GPD: $H^q(x,0,t=\Delta^2) = \int \mathrm{d}b_\perp \, e^{i\Delta\cdot b_\perp} q(x,b_\perp)$

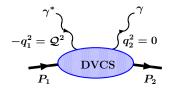
Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

(日)、

Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
00000	000	00000	00000000	0

Probing the proton with two photons

• Deeply virtual Compton scattering [Müller '92, et al. '94]



Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

3

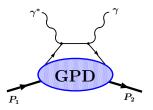
 Introduction to GPDs
 DVCS
 Conformal Approach to DVCS Beyond NLO
 Results
 Summary

 00000
 000
 000000
 0000000
 0

Probing the proton with two photons

• Deeply virtual Compton scattering [Müller '92, et al. '94]

• QCD: factorization of short- and long-distance physics



Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

化口压 化塑料 化塑料 化塑料

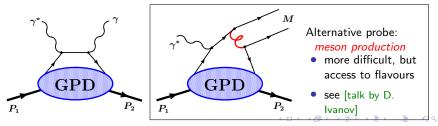
 Introduction to GPDs
 DVCS
 Conformal Approach to DVCS Beyond NLO
 Results
 Summary

 00000
 000
 000000
 0
 0
 0
 0
 0

Probing the proton with two photons

• Deeply virtual Compton scattering [Müller '92, et al. '94]

• QCD: factorization of short- and long-distance physics



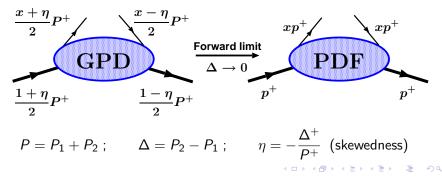
Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
00000	000	00000	0000000	0

Definition of GPDs

• In QCD GPDs are defined as [Müller '92, et al. '94, Ji, Radyushkin '96]

$$F^{q}(x,\eta,\Delta^{2}) = \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P_{2}|\bar{q}(-z)\gamma^{+}q(z)|P_{1}\rangle\Big|_{z^{+}=0, z_{\perp}=0}$$

$$F^{g}(x,\eta,\Delta^{2}) = \frac{4}{P^{+}} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P_{2}|G_{a}^{+\mu}(-z)G_{a\mu}^{+}(z)|P_{1}\rangle\Big|_{...}$$



Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
0000	000	00000	00000000	0

• Decomposing into helicity conserving and non-conserving part:

$$F^{a} = \frac{\overline{u}(P_{2})\gamma^{+}u(P_{1})}{P^{+}}H^{a} + \frac{\overline{u}(P_{2})i\sigma^{+\nu}u(P_{1})\Delta_{\nu}}{2MP^{+}}E^{a} \qquad a = q,g$$

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
0000	000	00000	00000000	0

• Decomposing into helicity conserving and non-conserving part:

$$F^{a} = \frac{\overline{u}(P_{2})\gamma^{+}u(P_{1})}{P^{+}}H^{a} + \frac{\overline{u}(P_{2})i\sigma^{+\nu}u(P_{1})\Delta_{\nu}}{2MP^{+}}E^{a} \qquad a = q,g$$

• Forward limit $(\Delta \rightarrow 0)$: \Rightarrow GPD \rightarrow PDF

$$F^{q}(x,0,0) = H^{q}(x,0,0) = \theta(x)q(x) - \theta(-x)\bar{q}(-x)$$

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

(日) (四) (日) (日) (日)

Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
0000	000	00000	00000000	0

• Decomposing into helicity conserving and non-conserving part:

$$F^{a} = \frac{\overline{u}(P_{2})\gamma^{+}u(P_{1})}{P^{+}}H^{a} + \frac{\overline{u}(P_{2})i\sigma^{+\nu}u(P_{1})\Delta_{\nu}}{2MP^{+}}E^{a} \qquad a = q,g$$

• Forward limit $(\Delta \rightarrow 0)$: \Rightarrow GPD \rightarrow PDF

$$F^{q}(x,0,0) = H^{q}(x,0,0) = \theta(x)q(x) - \theta(-x)\bar{q}(-x)$$

• Sum rules:

$$\sum_{q=u,d} Q_q \int_{-1}^1 dx \begin{cases} H^q(x,\eta,\Delta^2) \\ E^q(x,\eta,\Delta^2) \end{cases} = \begin{cases} F_1(\Delta^2) \\ F_2(\Delta^2) \end{cases}$$

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ○ ◆

Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
0000	000	00000	00000000	0

• Decomposing into helicity conserving and non-conserving part:

$$F^{a} = \frac{\bar{u}(P_{2})\gamma^{+}u(P_{1})}{P^{+}}H^{a} + \frac{\bar{u}(P_{2})i\sigma^{+\nu}u(P_{1})\Delta_{\nu}}{2MP^{+}}E^{a} \qquad a = q,g$$

• Forward limit $(\Delta \rightarrow 0)$: \Rightarrow GPD \rightarrow PDF

$$F^{q}(x,0,0) = H^{q}(x,0,0) = \theta(x)q(x) - \theta(-x)\bar{q}(-x)$$

Sum rules:

$$\sum_{q=u,d} Q_q \int_{-1}^1 dx \begin{cases} H^q(x,\eta,\Delta^2) \\ E^q(x,\eta,\Delta^2) \end{cases} = \begin{cases} F_1(\Delta^2) \\ F_2(\Delta^2) \end{cases}$$

Possibility of solution of proton spin problem

$$\frac{1}{2} \int_{-1}^{1} dx \, x \Big[H^q(x,\eta,\Delta^2) + E^q(x,\eta,\Delta^2) \Big] = J^q(\Delta^2) \qquad \text{[Ji '96]}$$

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

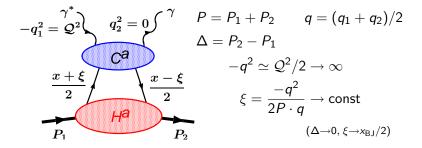
◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ○ ◆

DVCS

Conformal Approach to DVCS Beyond NLO 00000 esults Si

ヘロト 人間ト ヘヨト ヘヨト

Deeply virtual Compton scattering



(Dominant) Compton form factor (CFF):

$${}^{a}\mathcal{H}(\xi,\Delta^{2},\mathcal{Q}^{2}) = \int \mathrm{d}x \ C^{a}(x,\xi,\mathcal{Q}^{2}/\mu^{2}) \ H^{a}(x,\eta=\xi,\Delta^{2},\mu^{2})$$
$${}^{a=\mathrm{NS},\mathrm{S}(\Sigma,G)}$$

Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
00000	000	00000	00000000	0

Conformal moment series representation

- Experiment: measurements at DESY, JLab, CERN
- Theory: LO, NLO (1st order in α_s)

[Ji et al, Belitsky et al, Mankiewicz et al, '97]

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ○ ◆

- \Rightarrow need NNLO to stabilize perturbation series and investigate convergence

Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
00000	000	00000	00000000	0

Conformal moment series representation

- Experiment: measurements at DESY, JLab, CERN
- Theory: LO, NLO (1st order in α_s)

[Ji et al, Belitsky et al, Mankiewicz et al, '97]

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ○ ◆

• \Rightarrow need NNLO to stabilize perturbation series and investigate convergence \Rightarrow conformal approach

Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
00000	000	00000	00000000	0

Conformal moment series representation

- Experiment: measurements at DESY, JLab, CERN
- Theory: LO, NLO (1st order in α_s)

[Ji et al, Belitsky et al, Mankiewicz et al, '97]

- \Rightarrow need NNLO to stabilize perturbation series and investigate convergence \Rightarrow conformal approach
- singlet DVCS CFF in terms of conformal moments:

$${}^{S}\mathcal{H}(\xi,\Delta^{2},\mathcal{Q}^{2}) = 2\sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_{j}(\mathcal{Q}^{2}/\mu^{2},\alpha_{\mathfrak{s}}(\mu)) \mathbf{H}_{j}(\xi=\eta,\Delta^{2},\mu^{2})$$
$$H_{j}^{q}(\eta,\ldots) = \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} \mathrm{d}x \ \eta^{j-1} C_{j}^{3/2}(x/\eta) H^{q}(x,\eta,\ldots)$$
$$\to \langle P_{2}|O_{jj}^{q}|P_{1}\rangle$$

... analogous to Mellin moments in DIS: $x^n \to C_n^{3/2}(x)$

Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
00000	000	00000	00000000	0

Mellin-Barnes representation of CFFs

• Series is summed using Mellin-Barnes integral

$${}^{\mathrm{S}}\mathcal{H}(\xi,\Delta^{2},\mathcal{Q}^{2}) = \frac{1}{2i} \int_{c-i\infty}^{c+i\infty} dj \,\xi^{-j-1} \left[i + \tan\left(\frac{\pi j}{2}\right) \right]$$

$$\times \mathbf{C}_{j}(\mathcal{Q}^{2}/\mu^{2}, \alpha_{s}(\mu))\mathbf{H}_{j}(\xi, \Delta^{2}, \mu^{2})$$

- Advantages of conformal moments i.e. Mellin-Barnes representation
 - possible efficient and stable numerical treatment
 - enables easier inclusion of evolution effects
 - opens the door for alternative modelling of GPDs
 - by making use of conformal OPE and known NNLO DIS results, NNLO predictions obtained

Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
00000	000		00000000	O
		OPE		

 DVCS belongs to a class of two-photon processes (DIS, DVCS, two-photon production of hadronic states ...) calculable by means of OPE

$$T_{\mu\nu}(q, P, \Delta) = \frac{i}{e^2} \int d^4x \, e^{ix \cdot q} \langle P_2, S_2 | T j_\mu(x/2) j_\nu(-x/2) | P_1, S_1 \rangle$$

$$\rightarrow \sum_j C_j O_j$$

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うらつ

Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
00000	000		00000000	O
		OPF		

 DVCS belongs to a class of two-photon processes (DIS, DVCS, two-photon production of hadronic states ...) calculable by means of OPE

$$\begin{array}{ll} T_{\mu\nu}(q,P,\Delta) &=& \displaystyle \frac{i}{e^2} \int d^4x \, e^{ix \cdot q} \langle P_2, S_2 | \, Tj_{\mu}(x/2) j_{\nu}(-x/2) | P_1, S_1 \rangle \\ \\ & \rightarrow & \displaystyle \sum_j C_j \, O_j \\ \\ & \downarrow \\ \\ & \text{generalized Bjorken kinematics} \\ & \text{conformal symmetry} \end{array} \right\} \rightarrow \text{unified description} \end{array}$$

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ● のへで

roduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Sum
0000	000	00000	00000000	0

Conformal OPE (COPE)

• COPE prediction for general kinematics reads

$$C_{j}(\eta/\xi, Q^{2}/\mu^{2}, \alpha_{s}^{*} = fixed) = c_{j}(\alpha_{s}^{*})_{2}F_{1}\begin{pmatrix} (2+2j+\gamma_{j}(\alpha_{s}^{*}))/4, (4+2j+\gamma_{j}(\alpha_{s}^{*}))/4 & |\frac{\eta^{2}}{\xi^{2}} \\ (5+2j+\gamma_{j}(\alpha_{s}^{*}))/2 & |\frac{\eta^{2}}{\xi^{2}} \end{pmatrix} \begin{pmatrix} \mu^{2} \\ Q^{2} \end{pmatrix}^{\frac{\gamma_{j}(\alpha_{s}^{*})}{2}},$$

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

ction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
	000	00000	00000000	0

Conformal OPE (COPE)

• COPE prediction for general kinematics reads

$$C_{j}(\eta/\xi, Q^{2}/\mu^{2}, \alpha_{s}^{*} = fixed) = c_{j}(\alpha_{s}^{*})_{2}F_{1}\binom{(2+2j+\gamma_{j}(\alpha_{s}^{*}))/4, (4+2j+\gamma_{j}(\alpha_{s}^{*}))/4}{(5+2j+\gamma_{j}(\alpha_{s}^{*}))/2} \left|\frac{\eta^{2}}{\xi^{2}}\right) \left(\frac{\mu^{2}}{Q^{2}}\right)^{\frac{\gamma_{j}(\alpha_{s}^{*})}{2}},$$

$$\lim_{\eta \to 0} C_j(\eta/\xi, Q^2/\mu^2, \alpha_s^*) = c_j^{DIS}(\alpha_s^*)|_{\beta=0} \left(\frac{\mu^2}{Q^2}\right)^{\gamma_j(\alpha_s^*)/2}$$

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

ction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
)	000	0000	00000000	0

Conformal OPE (COPE)

• COPE prediction for general kinematics reads

$$C_{j}(\eta/\xi, Q^{2}/\mu^{2}, \alpha_{s}^{*} = fixed) = c_{j}(\alpha_{s}^{*})_{2}F_{1}\binom{(2+2j+\gamma_{j}(\alpha_{s}^{*}))/4, (4+2j+\gamma_{j}(\alpha_{s}^{*}))/4}{(5+2j+\gamma_{j}(\alpha_{s}^{*}))/2} \left|\frac{\eta^{2}}{\xi^{2}}\right) \left(\frac{\mu^{2}}{Q^{2}}\right)^{\frac{\gamma_{j}(\alpha_{s}^{*})}{2}},$$

$$\lim_{\eta \to 0} C_j(\eta/\xi, Q^2/\mu^2, \alpha_s^*) = c_j^{DIS}(\alpha_s^*)|_{\beta=0} \left(\frac{\mu^2}{Q^2}\right)^{\gamma_j(\alpha_s^*)/2}$$

- $\eta = \xi$: DVCS
- $\eta = 1$: photon-to-pion transition form factor

Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
00000	000	00000	00000000	0

Breaking of conformal symmetry

- massless QCD is conformally symmetric at the tree level
- conformal symmetry broken at the loop level (renormalization introduces mass scale)
 - running of the coupling constant $\Rightarrow \beta \neq 0$
 - renormalization of the composite operators \Rightarrow non-diagonal anomalous dimensions $\gamma_{jk} = \delta_{jk}\gamma_j + \gamma_{ik}^{ND}$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ○ ◆

Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
00000	000	00000	00000000	0

Breaking of conformal symmetry

- massless QCD is conformally symmetric at the tree level
- conformal symmetry broken at the loop level (renormalization introduces mass scale)
 - running of the coupling constant $\Rightarrow \beta \neq 0$
 - renormalization of the composite operators \Rightarrow non-diagonal anomalous dimensions $\gamma_{jk} = \delta_{jk}\gamma_j + \gamma_{ik}^{ND}$

$$\mu \frac{d}{d\mu} O_j(...,\mu^2) = -\sum_{k=0}^{j} \gamma_{jk}(\alpha_s(\mu)) \eta^{j-k} O_k(...,\mu^2),$$

$$\mu \frac{d}{d\mu} C_j(..., Q^2/\mu^2, \alpha_s(\mu))] = \sum_{k=j}^{\infty} C_k(..., Q^2/\mu^2, \alpha_s(\mu)) \gamma_{kj}(\alpha_s(\mu)) \left(\frac{\eta}{\xi}\right)^{k-j}$$

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ○ ◆

ntroduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
00000	000	00000	00000000	0

Conformal scheme

 non-diagonal terms of anomalous dimensions (MS scheme) can be removed by finite renormalization, i.e, specific choice of factorization scheme → conformal subtraction (CS) scheme:

$$C^{\overline{\text{MS}}} O^{\overline{\text{MS}}} = C^{\overline{\text{MS}}} B B^{-1} O^{\overline{\text{MS}}} = C^{\overline{\text{CS}}} O^{\overline{\text{CS}}}$$
$$\gamma_{jk}^{\overline{\text{CS}}} = \delta_{jk} \gamma_k + \frac{\beta}{g} \Delta_{jk}$$

- however, there is ambiguity in $\overline{\text{MS}} \rightarrow \text{CS}$ rotation matrix:

$$B = B^{(\beta=0)} + \frac{\beta}{g} \delta B$$

and by judicious choice of δB one can "push" mixing to NNLO ($\overline{\text{CS}}$ scheme, [Melić et al. '02]) $\rightarrow \Delta_{jk}$ — unknown correction, starts at NNLO, and can be suppressed by choice of initial condition — neglected

n to GPDs DVCS Conformal Approach to DVCS Beyond NLO

Results Summa

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 回 > < 0 < 0</p>

NNLO DVCS

• Finally

$$C_{j}^{\text{CS,DVCS}}(Q^{2}/\mu^{2}, \alpha_{s}(\mu))$$

$$= C_{k}(1, \alpha_{s}(Q)) \mathcal{P} \exp\left\{\int_{Q}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_{j}(\alpha_{s}(\mu'))\delta_{kj} + \frac{\beta}{g}\Delta_{kj}(\ldots)\right]\right\}$$

with

$$C_{j}(1,\alpha_{s}(Q)) = \frac{2^{1+j+\gamma_{j}(\alpha_{s})/2}\Gamma\left(\frac{5}{2}+j+\gamma_{j}(\alpha_{s})/2\right)}{\Gamma(3/2)\Gamma\left(3+j+\gamma_{j}(\alpha_{s})/2\right)} c_{j}^{\overline{\mathsf{MS}},\mathsf{DIS}}(\alpha_{s})$$

we take

 $c_j^{\overline{\text{MS,DIS}}}(\alpha_s)$ from [Zijlstra, v. Neerven '92, '94, v. Neerven and Vogt '00] γ_j from [Vogt, Moch and Vermaseren '04]

Introduction to GPDs 00000	DVCS 000	Conformal Approach to DVCS Beyond NLO	Results ••••••	Summary O

- We have used this formalism to
 - investigate size of NNLO corrections to non-singlet [Müller '05] and singlet [Kumerički, Müller, K.P-K, and Schäfer '06] Compton form factors

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
00000	000		•0000000	O

- We have used this formalism to
 - 1. investigate size of NNLO corrections to non-singlet [Müller '05] and singlet [Kumerički, Müller, K.P-K, and Schäfer '06] Compton form factors
 - compare the NLO predictions to complete (non-diagonal evolution included) MS NLO predictions [Kumerički, Müller and K. P-K. '07]

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
00000	000		•••••••	O

- We have used this formalism to
 - 1. investigate size of NNLO corrections to non-singlet [Müller '05] and singlet [Kumerički, Müller, K.P-K, and Schäfer '06] Compton form factors
 - compare the NLO predictions to complete (non-diagonal evolution included) MS NLO predictions [Kumerički, Müller and K. P-K. '07]
 - 3. perform fits (in both schemes) to DVCS (and DIS) data and extract information about GPDs [Kumerički, Müller and K. P-K. '07]

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ○ ◆

Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
00000	000	00000	0000000	0

Choice of GPD Ansatz

• We use simple Regge-inspired ansatz for GPDs

$$\mathbf{H}_{j}(\xi, \Delta^{2}, \mu_{0}^{2}) = \begin{pmatrix} N_{\Sigma}' F_{\Sigma}(\Delta^{2}) \mathbf{B}(1+j-\alpha_{\Sigma}(0), 8) \\ N_{G}' F_{G}(\Delta^{2}) \mathbf{B}(1+j-\alpha_{G}(0), 6) \end{pmatrix}$$
$$\alpha_{a}(\Delta^{2}) = \alpha_{a}(0) + 0.15\Delta^{2} \qquad F_{a}(\Delta^{2}) = \frac{j+1-\alpha(0)}{j+1-\alpha(\Delta^{2})} \left(1-\frac{\Delta^{2}}{M_{0}^{a^{2}}}\right)^{-p_{a}}$$

 \ldots corresponding in forward case ($\Delta=0)$ to PDFs of form

$$\Sigma(x) = N'_{\Sigma} x^{-\alpha_{\Sigma}(0)} (1-x)^7$$
; $G(x) = N'_{G} x^{-\alpha_{G}(0)} (1-x)^5$

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ○ ◆

ntroduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
00000	000	00000	0000000	0

Choice of GPD Ansatz

• We use simple Regge-inspired ansatz for GPDs

$$\mathbf{H}_{j}(\xi, \Delta^{2}, \mu_{0}^{2}) = \begin{pmatrix} N_{\Sigma}' F_{\Sigma}(\Delta^{2}) \mathsf{B}(1+j-\alpha_{\Sigma}(0), 8) \\ N_{G}' F_{G}(\Delta^{2}) \mathsf{B}(1+j-\alpha_{G}(0), 6) \end{pmatrix}$$
$$\alpha_{a}(\Delta^{2}) = \alpha_{a}(0) + 0.15\Delta^{2} \qquad F_{a}(\Delta^{2}) = \frac{j+1-\alpha(0)}{j+1-\alpha(\Delta^{2})} \left(1-\frac{\Delta^{2}}{M_{0}^{a^{2}}}\right)^{-p_{a}}$$

 \ldots corresponding in forward case ($\Delta=0)$ to PDFs of form

$$\Sigma(x) = N'_{\Sigma} x^{-lpha_{\Sigma}(0)} (1-x)^7$$
; $G(x) = N'_{G} x^{-lpha_{G}(0)} (1-x)^5$

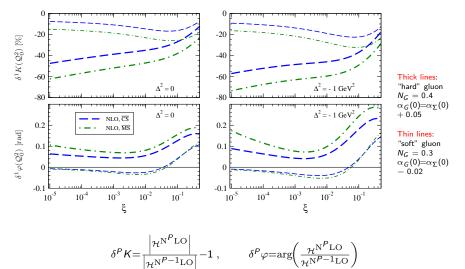
- analysis of radiative corrections (with generic parameters)
- fit of N_{Σ} , $\alpha_{\Sigma}(0)$, M_0^{Σ} , N_G , $\alpha_G(0)$, M_0^G

for small ξ (small x) valence quarks less important: $\Sigma \approx \text{sea}$

DVCS 000 Conformal Approach to DVCS Beyond NLO 00000 Results Summary

э

NLO corrections



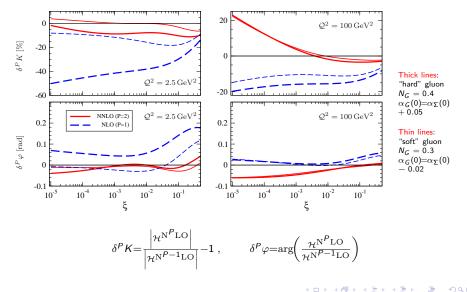
Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

< □ > < 同 >

DVCS

Conformal Approach to DVCS Beyond NLO 00000

NNLO corrections

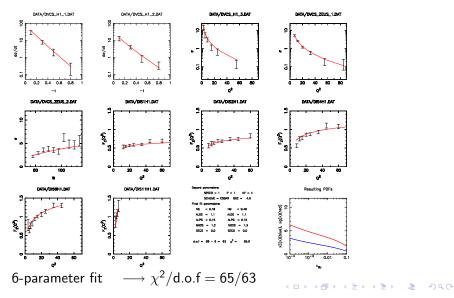


000

Conformal Approach to DVCS Beyond NLO 00000

Results Sum

Fast fitting routine (GeParD)

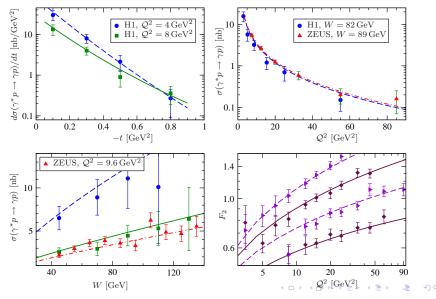


DVCS

Conformal Approach to DVCS Beyond NLO 00000

Results Sumi

Example of final fit result



000

Results Summar

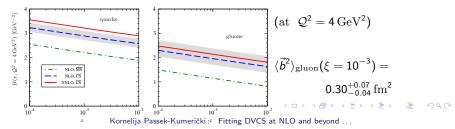
Parton probability density

 Fourier transform of GPD for η = 0 can be interpreted as probability density depending on x and transversal distance b [Burkardt '00, '02]

$$H(x, \vec{b}) = \int \frac{d^2 \vec{\Delta}}{(2\pi)^2} e^{-i \vec{b} \cdot \vec{\Delta}} H(x, \eta = 0, \Delta^2 = -\vec{\Delta}^2) ,$$

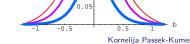
• Average transversal distance :

$$\langle \vec{b}^2 \rangle(x, \mathcal{Q}^2) = \frac{\int d\vec{b} \, \vec{b}^2 H(x, \vec{b}, \mathcal{Q}^2)}{\int d\vec{b} \, H(x, \vec{b}, \mathcal{Q}^2)} = 4B(x, \mathcal{Q}^2),$$



Introduction to GPDs 00000	DVCS 000	Conformal Approach to DVCS Beyond NLO	Results ○○○○○○○●	Summa O
٢	⁻ hree-di	mensional image of a pro	oton	
Quarks:		Gluons:		
		0.1 0.075 0.055 x H(x,b)	0.2 0.1 H(x,)	D)

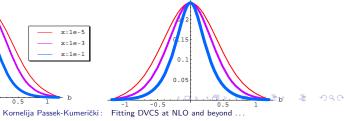
log(x)



H(x,b)

b[fm]

x=le-5 x=le-3 x=le-1



norm. * H(x,b)

b/fm

 $\log(x)$

Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
00000	000	00000	00000000	•

• Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
00000	000	00000	00000000	•

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
00000	000	00000	0000000	•

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.
- NLO corrections can be sizable, and are strongly dependent on the gluonic input.

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
00000	000	00000	00000000	•

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.
- NLO corrections can be sizable, and are strongly dependent on the gluonic input.
- NNLO corrections are small to moderate, supporting perturbative framework of DVCS.

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
00000	000	00000	00000000	•

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.
- NLO corrections can be sizable, and are strongly dependent on the gluonic input.
- NNLO corrections are small to moderate, supporting perturbative framework of DVCS.
- Scale dependence is not so conclusive: large NNLO effects for $\xi \lesssim 10^{-3}$ signaling breakdown of naive perturbation series.

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
00000	000	00000	0000000	•

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.
- NLO corrections can be sizable, and are strongly dependent on the gluonic input.
- NNLO corrections are small to moderate, supporting perturbative framework of DVCS.
- Scale dependence is not so conclusive: large NNLO effects for $\xi \lesssim 10^{-3}$ signaling breakdown of naive perturbation series.
- Fits to available DVCS and DIS data work well and give access to transversal distribution of partons.

Introduction to GPDs	DVCS	Conformal Approach to DVCS Beyond NLO	Results	Summary
00000	000	00000	0000000	•

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.
- NLO corrections can be sizable, and are strongly dependent on the gluonic input.
- NNLO corrections are small to moderate, supporting perturbative framework of DVCS.
- Scale dependence is not so conclusive: large NNLO effects for $\xi \lesssim 10^{-3}$ signaling breakdown of naive perturbation series.
- Fits to available DVCS and DIS data work well and give access to transversal distribution of partons.

The End

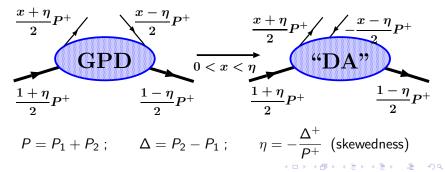
Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

Relation to distribution amplitudes

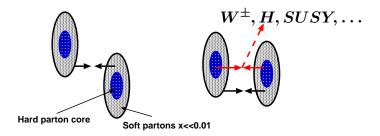
• In QCD GPDs are defined as [Müller '92, et al. '94, Ji, Radyushkin '96]

$$F^{q}(x,\eta,\Delta^{2}) = \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P_{2}|\bar{q}(-z)\gamma^{+}q(z)|P_{1}\rangle\Big|_{z^{+}=0, z_{\perp}=0}$$

$$F^{g}(x,\eta,\Delta^{2}) = \frac{4}{P^{+}} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P_{2}|G^{+\mu}_{a}(-z)G^{+\mu}_{a\mu}(z)|P_{1}\rangle\Big|_{...}$$



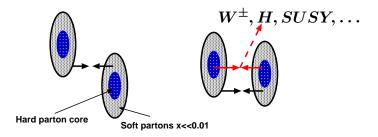
Relevance of GPDs for collider physics



- heavy particle production ⇒ collision is more central
 ⇒ larger probability for multiple parton collisions
- [Frankfurt, Strikman and Weiss '04]

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

Relevance of GPDs for collider physics

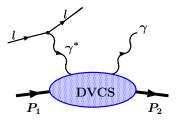


- heavy particle production ⇒ collision is more central
 ⇒ larger probability for multiple parton collisions
- [Frankfurt, Strikman and Weiss '04]
- No influence on total inclusive cross sections, but event structure is sensitive to transversal parton distributions.
- Relevant for LHC?

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

Deeply virtual Compton scattering (I)

• Measured in leptoproduction of a real photon:

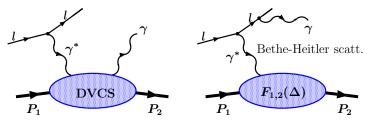


Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

(日) (四) (日) (日) (日)

Deeply virtual Compton scattering (I)

• Measured in leptoproduction of a real photon:



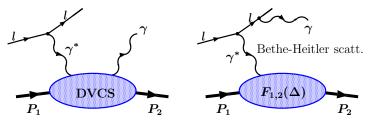
• There is a background process

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

A D > A P > A D > A D >

Deeply virtual Compton scattering (I)

• Measured in leptoproduction of a real photon:



 There is a background process but it can be used to our advantage:

$\sigma \propto |\mathcal{T}_{\rm DVCS}|^2 + |\mathcal{T}_{\rm BH}|^2 + \mathcal{T}_{\rm DVCS}^* \mathcal{T}_{\rm BH} + \mathcal{T}_{\rm DVCS} \mathcal{T}_{\rm BH}^*$

• Using \mathcal{T}_{BH} as a referent "source" enables measurement of the phase of $\mathcal{T}_{DVCS} \rightarrow$ proton "holography" [Belitsky and Müller '02]

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

Conformal algebra

• Conformal group restricted to light-cone ~ O(2, 1) $L_+ = -iP_+$ $[L_0, L_{\mp}] = \mp L_{\mp}$ conf.spin j: $L_- = \frac{i}{2}K_ [L_-, L_+] = -2L_0$ $[L^2, \mathbb{O}_{n,n+k}] =$ Casimir: $j(j-1)\mathbb{O}_{n,k}$ $L_0 = \frac{i}{2}(D+M_{-+})$ $L^2 = L_0^2 - L_0 + L_-L_+$

 $(D - \text{dilatations}, K_- - \text{special conformal transformation (SCT)})$

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ○ ◆

$$J_{\rm em}(x)J_{\rm em}(0) \longrightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{1}{x^2}\right)^2 x_{-}^{n+k+1} C_{n,k} O_{n,k}$$
$$O_{n,k} \equiv (i\partial_+)^k \, \bar{\psi} \, \gamma^+ (i \stackrel{\leftrightarrow}{D}_+)^n \psi$$
$$\stackrel{\leftrightarrow}{D}_+ \equiv \stackrel{\leftarrow}{D}_+ - \stackrel{\leftarrow}{D}_+$$

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

$$J_{\rm em}(x)J_{\rm em}(0) \longrightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{1}{x^2}\right)^2 x_{-}^{n+k+1} C_{n,k} O_{n,k}$$
$$k = 0: \qquad O_{n,0} \equiv \qquad \bar{\psi} \gamma^+ (i \stackrel{\leftrightarrow}{D}_+)^n \psi$$
$$\stackrel{\leftrightarrow}{D}_+ \equiv \vec{D}_+ - \vec{D}_+$$

• $C_{n,0}$ and γ_n of $O_{n,0}$ are well known from DIS up to NNLO.

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

$$J_{\rm em}(x)J_{\rm em}(0) \longrightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{1}{x^2}\right)^2 x_{-}^{n+k+1} C_{n,k} O_{n,k}$$
$$O_{n,k} \equiv (i\partial_+)^k \, \bar{\psi} \, \gamma^+ (i \stackrel{\leftrightarrow}{D}_+)^n \psi \qquad i\partial_+ \stackrel{{\rm M.E.}}{\to} -\Delta_+$$
$$\stackrel{\leftrightarrow}{D}_+ \equiv \vec{D}_+ - \vec{D}_+$$

- $C_{n,0}$ and γ_n of $O_{n,0}$ are well known from DIS up to NNLO.
- But $C_{n,k}$ and $\gamma_{n,k}$ are not so well known.
- $\gamma_{n,k} \neq 0 \Rightarrow$ operators $O_{n,k}$ mix under evolution.

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ○ ◆

$$J_{\rm em}(x)J_{\rm em}(0) \longrightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{1}{x^2}\right)^2 x_{-}^{n+k+1} C_{n,k} O_{n,k}$$
$$O_{n,k} \equiv (i\partial_+)^k \, \bar{\psi} \, \gamma^+ (i \stackrel{\leftrightarrow}{D}_+)^n \psi \qquad i\partial_+ \stackrel{\rm M.E.}{\to} -\Delta_+$$
$$\stackrel{\leftrightarrow}{D}_+ \equiv \vec{D}_+ - \vec{D}_+$$

- $C_{n,0}$ and γ_n of $O_{n,0}$ are well known from DIS up to NNLO.
- But $C_{n,k}$ and $\gamma_{n,k}$ are not so well known.
- $\gamma_{n,k} \neq 0 \Rightarrow$ operators $O_{n,k}$ mix under evolution.
- Choosing operator basis in which $\gamma_{n,k}$ is diagonal would help. But how to diagonalize unknown matrix?!

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

ション ふゆ シューション ション シックション

$$J_{\rm em}(x)J_{\rm em}(0) \longrightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{1}{x^2}\right)^2 x_{-}^{n+k+1} C_{n,k} O_{n,k}$$
$$O_{n,k} \equiv (i\partial_+)^k \, \bar{\psi} \, \gamma^+ (i \stackrel{\leftrightarrow}{D}_+)^n \psi \qquad i\partial_+ \stackrel{\rm M.E.}{\to} -\Delta_+$$
$$\stackrel{\leftrightarrow}{D}_+ \equiv \vec{D}_+ - \vec{D}_+$$

- $C_{n,0}$ and γ_n of $O_{n,0}$ are well known from DIS up to NNLO.
- But $C_{n,k}$ and $\gamma_{n,k}$ are not so well known.
- $\gamma_{n,k} \neq 0 \Rightarrow$ operators $O_{n,k}$ mix under evolution.
- Choosing operator basis in which $\gamma_{n,k}$ is diagonal would help. But how to diagonalize unknown matrix?!
- (At least) to LO answer is: use conformal operators.

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

$$\mathbb{O}_{n,n+k} = (i\partial^+)^{n+k} \,\bar{\psi} \,\gamma^+ \, C_n^{3/2} \left(\frac{\stackrel{\leftrightarrow}{D^+}}{\partial^+}\right) \psi$$

- they have well-defined conformal spin j = n + 2
- massless QCD is conformally symmetric at the tree level ⇒ conformal spin is conserved

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\mathbb{O}_{n,n+k} = (i\partial^+)^{n+k} \,\bar{\psi} \,\gamma^+ \, C_n^{3/2} \left(\frac{\stackrel{\leftrightarrow}{D^+}}{\partial^+}\right) \psi$$

- they have well-defined conformal spin j = n + 2
- massless QCD is conformally symmetric at the tree level ⇒ conformal spin is conserved
- mixing of operators with different n is forbidden by conformal symmetry, while mixing of those with different n + k is forbidden by Lorentz symmetry

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

$$\mathbb{O}_{n,n+k} = (i\partial^+)^{n+k} \,\bar{\psi} \,\gamma^+ \, C_n^{3/2} \left(\frac{\stackrel{\leftrightarrow}{D^+}}{\partial^+}\right) \psi$$

- they have well-defined conformal spin j = n + 2
- massless QCD is conformally symmetric at the tree level ⇒ conformal spin is conserved
- mixing of operators with different *n* is forbidden by conformal symmetry, while mixing of those with different n + k is forbidden by Lorentz symmetry $\Rightarrow \mathbb{O}_{n,n+k}$ don't mix at LO

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ○ ◆

$$\mathbb{D}_{n,n+k} = (i\partial^+)^{n+k} \,\bar{\psi} \,\gamma^+ \, C_n^{3/2} \left(\frac{\stackrel{\leftrightarrow}{D^+}}{\partial^+}\right) \psi$$

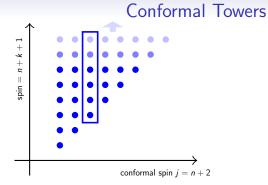
- they have well-defined conformal spin j = n + 2
- massless QCD is conformally symmetric at the tree level ⇒ conformal spin is conserved
- mixing of operators with different *n* is forbidden by conformal symmetry, while mixing of those with different n + k is forbidden by Lorentz symmetry $\Rightarrow \mathbb{O}_{n,n+k}$ don't mix at LO
- conformal symmetry broken at the loop level (renormalization introduces mass scale, dimensional transmutation) ⇒
 - running of the coupling constant $\partial g/\partial \ln \mu \equiv \beta \neq 0$
 - anomalous dimensions of operators $\gamma_{jk} = \delta_{jk}\gamma_j + \gamma_{jk}^{ND}$

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

$$\mathbb{O}_{n,n+k} = (i\partial^+)^{n+k} \,\bar{\psi} \,\gamma^+ \, C_n^{3/2} \left(\frac{\stackrel{\leftrightarrow}{D^+}}{\partial^+}\right) \psi$$

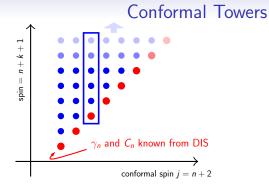
- they have well-defined conformal spin j = n + 2
- massless QCD is conformally symmetric at the tree level ⇒ conformal spin is conserved
- mixing of operators with different *n* is forbidden by conformal symmetry, while mixing of those with different n + k is forbidden by Lorentz symmetry $\Rightarrow \mathbb{O}_{n,n+k}$ don't mix at LO
- conformal symmetry broken at the loop level (renormalization introduces mass scale, dimensional transmutation) ⇒
 - running of the coupling constant $\partial g/\partial \ln \mu \equiv \beta \neq 0$
 - anomalous dimensions of operators $\gamma_{jk} = \delta_{jk}\gamma_j + \gamma_{jk}^{ND}$
 - $\Rightarrow \mathbb{O}_{n,n+k}$ start to mix at NLO

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...



Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

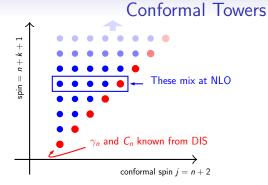
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

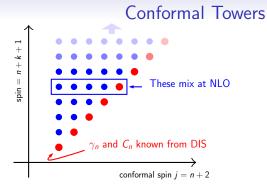
▲□▶ ▲圖▶ ▲注▶ ▲注▶ -

æ



Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

A D > A P > A D > A D >

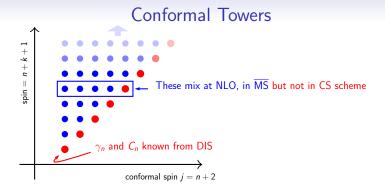


• Diagonalize in artificial $\beta = 0$ theory by changing scheme

$$\mathbb{O}^{\mathrm{CS}} = B^{-1} \mathbb{O}^{\overline{\mathrm{MS}}} \qquad \text{so that} \qquad \gamma_{jk}^{\mathsf{CS}} = \delta_{jk} \gamma_k$$

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

A D > A P > A B > A B >

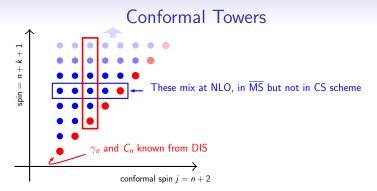


• Diagonalize in artificial $\beta = 0$ theory by changing scheme

$$\mathbb{O}^{\mathrm{CS}} = B^{-1} \mathbb{O}^{\overline{\mathrm{MS}}}$$
 so that $\gamma_{jk}^{\mathsf{CS}} = \delta_{jk} \gamma_k$

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

化口下 化固下 化压下 化压下



• Diagonalize in artificial $\beta = 0$ theory by changing scheme

$$\mathbb{O}^{\mathrm{CS}} = B^{-1} \mathbb{O}^{\overline{\mathrm{MS}}} \qquad \text{so that} \qquad \gamma_{jk}^{\mathsf{CS}} = \delta_{jk} \gamma_k$$

•
$$C_{n,k} = (-1)^k \frac{(n+2)_k}{k!(2n+4)_k} C_{n,0} \implies \text{summing complete tower}$$

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

• • • • • • • • • • • • •

• In full QCD $\beta \neq 0$ and NLO diagonalization is spoiled:

$$\gamma_{jk}^{\mathsf{CS}} = \delta_{jk}\gamma_k + \frac{\beta}{g}\Delta_{jk}$$

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ⊘

• In full QCD $\beta \neq 0$ and NLO diagonalization is spoiled:

$$\gamma_{jk}^{\mathsf{CS}} = \delta_{jk}\gamma_k + \frac{\beta}{g}\Delta_{jk}$$

- However, there is also ambiguity in $\overline{\text{MS}} \rightarrow \text{CS}$ rotation matrix:

$$B=B^{(eta=0)}+rac{eta}{g}\delta B$$

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

• In full QCD $\beta \neq 0$ and NLO diagonalization is spoiled:

$$\gamma_{jk}^{\mathsf{CS}} = \delta_{jk}\gamma_k + \frac{\beta}{g}\Delta_{jk}$$

• However, there is also ambiguity in $\overline{\text{MS}} \rightarrow \text{CS}$ rotation matrix:

$$B = B^{(eta=0)} + rac{eta}{g} \delta B$$

• By judicious choice of δB one can "push" mixing to NNLO ($\overline{\text{CS}}$ scheme, [Melić et al.]).

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

• In full QCD $\beta \neq 0$ and NLO diagonalization is spoiled:

$$\gamma_{jk}^{\mathsf{CS}} = \delta_{jk}\gamma_k + \frac{\beta}{g}\Delta_{jk}$$

- However, there is also ambiguity in $\overline{\text{MS}} \rightarrow \text{CS}$ rotation matrix:

$$B = B^{(eta=0)} + rac{eta}{g} \delta B$$

- By judicious choice of δB one can "push" mixing to NNLO ($\overline{\text{CS}}$ scheme, [Melić et al.]).
- But how to calculate rotation matrix *B*? This is problem equivalent to calculation of $\gamma_{i,k}$.

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

$\beta \neq 0$ (II)

• The $B^{(\beta=0)}$ is constrained by conformal Ward identities ...

$$B_{jk}^{(\beta=0)\text{NLO}} = \delta_{jk} - \frac{\alpha_s}{2\pi} \theta(j > k) \frac{\gamma_{jk}^{\text{SCT, LO}}}{a_{jk}} \qquad (a_{jk} - \text{known matrix})$$
[Müller '93]

 $\mathsf{SCT} \equiv \mathsf{special} \ \mathsf{conformal} \ \mathsf{transformation}$

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ⊘

$\beta \neq 0$ (II)

• The $B^{(eta=0)}$ is constrained by conformal Ward identities \dots

$$B_{jk}^{(\beta=0)\text{NLO}} = \delta_{jk} - \frac{\alpha_s}{2\pi} \theta(j > k) \frac{\gamma_{jk}^{\text{SCT, LO}}}{a_{jk}} \qquad (a_{jk} - \text{known matrix})$$
[Müller '93]

 $\mathsf{SCT} \equiv \mathsf{special} \ \mathsf{conformal} \ \mathsf{transformation}$

• ... and, as a consequence

$$\overline{^{\text{MS}}\gamma_{jk}^{\text{ND},(1)}} = \frac{\left[\gamma^{\text{SCT, }(0)} - \beta_0 \frac{b}{g}, \gamma^{(0)}\right]_{jk}}{a_{jk}}$$

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

$\beta \neq 0$ (II)

• The $B^{(\beta=0)}$ is constrained by conformal Ward identities ...

$$B_{jk}^{(\beta=0)\text{NLO}} = \delta_{jk} - \frac{\alpha_s}{2\pi} \theta(j > k) \frac{\gamma_{jk}^{\text{SCT, LO}}}{a_{jk}} \qquad (a_{jk} - \text{known matrix})$$
[Müller '93]

 $\mathsf{SCT} \equiv \mathsf{special} \ \mathsf{conformal} \ \mathsf{transformation}$

• ... and, as a consequence

$$\overline{\mathrm{MS}}\gamma_{jk}^{\mathrm{ND},(1)} = \frac{\left[\gamma^{\mathrm{SCT, }(0)} - \beta_0 \frac{b}{g}, \gamma^{(0)}\right]_{jk}}{a_{jk}}$$

 Final result: *n*-loop DIS (diagonal) result + (n - 1)-loop SCT anomaly = *n*-loop non-diagonal prediction

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

NNLO DVCS (I)

• DVCS amplitude in terms of conformal moments:

$${}^{S}\mathcal{H}(\xi,\Delta^{2},\mathcal{Q}^{2}) = 2\sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_{j}(\mathcal{Q}^{2}/\mu^{2},\alpha_{s}(\mu)) \mathbf{H}_{j}(\xi=\eta,\Delta^{2},\mu^{2})$$
$$H_{j}^{q}(\eta,\ldots) = \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} \mathrm{d}x \ \eta^{j-1} C_{j}^{3/2}(x/\eta) H^{q}(x,\eta,\ldots)$$

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

NNLO DVCS (I)

• DVCS amplitude in terms of conformal moments:

$${}^{S}\mathcal{H}(\xi,\Delta^{2},\mathcal{Q}^{2}) = 2\sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_{j}(\mathcal{Q}^{2}/\mu^{2},\alpha_{s}(\mu)) \mathbf{H}_{j}(\xi=\eta,\Delta^{2},\mu^{2})$$
$$H_{j}^{q}(\eta,\ldots) = \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} \mathrm{d}x \ \eta^{j-1} C_{j}^{3/2}(x/\eta) H^{q}(x,\eta,\ldots)$$

• ... analogous to Mellin moments in DIS: $x^n \to C_n^{3/2}(x)$

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

NNLO DVCS (I)

• DVCS amplitude in terms of conformal moments:

$${}^{S}\mathcal{H}(\xi,\Delta^{2},\mathcal{Q}^{2}) = 2\sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_{j}(\mathcal{Q}^{2}/\mu^{2},\alpha_{s}(\mu)) \mathbf{H}_{j}(\xi=\eta,\Delta^{2},\mu^{2})$$
$$H_{j}^{q}(\eta,\ldots) = \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} \mathrm{d}x \ \eta^{j-1} C_{j}^{3/2}(x/\eta) H^{q}(x,\eta,\ldots)$$

- ... analogous to Mellin moments in DIS: $x^n \to C_n^{3/2}(x)$
- Here, Wilson coefficients C_j read ...

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

NNLO DVCS (II)

$$C_{j}(Q^{2}/\mu^{2}, Q^{2}/\mu^{*2}, \alpha_{s}(\mu)) = \sum_{k=j}^{\infty} C_{k}(1, \alpha_{s}(Q)) \mathcal{P} \exp\left\{\int_{Q}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_{j}(\alpha_{s}(\mu'))\delta_{kj} + \frac{\beta}{g}\Delta_{kj}(\alpha_{s}(\mu'), \mu'/\mu^{*})\right]\right\}$$

with

$$C_{j}(1,\alpha_{s}(Q)) = \frac{2^{1+j+\gamma_{j}(\alpha_{s})/2}\Gamma(\frac{5}{2}+j+\gamma_{j}(\alpha_{s})/2)}{\Gamma(3/2)\Gamma(3+j+\gamma_{j}(\alpha_{s})/2)} c_{j}^{\overline{\text{MS,DIS}}}(\alpha_{s})$$

• $\frac{2^{\cdots}\Gamma(\cdots)}{\Gamma(3/2)\Gamma(\cdots)}$ is result of resumming the conformal tower *j*

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ⊘

NNLO DVCS (II)

$$C_{j}(Q^{2}/\mu^{2}, Q^{2}/\mu^{*2}, \alpha_{s}(\mu)) = \sum_{k=j}^{\infty} C_{k}(1, \alpha_{s}(Q)) \mathcal{P} \exp\left\{\int_{Q}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_{j}(\alpha_{s}(\mu'))\delta_{kj} + \frac{\beta}{g}\Delta_{kj}(\alpha_{s}(\mu'), \mu'/\mu^{*})\right]\right\}$$

with

$$C_{j}(1,\alpha_{s}(Q)) = \frac{2^{1+j+\gamma_{j}(\alpha_{s})/2}\Gamma(\frac{5}{2}+j+\gamma_{j}(\alpha_{s})/2)}{\Gamma(3/2)\Gamma(3+j+\gamma_{j}(\alpha_{s})/2)} c_{j}^{\overline{\text{MS}},\text{DIS}}(\alpha_{s})$$

• $\frac{2^{\cdots}\Gamma(\cdots)}{\Gamma(3/2)\Gamma(\cdots)}$ is result of resumming the conformal tower *j* • $c_j^{\overline{\text{MS,DIS}}}(\alpha_s)$ from [Zijlstra, v. Neerven '92, '94, v. Neerven and Vogt '00]

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

NNLO DVCS (II)

$$C_{j}(Q^{2}/\mu^{2}, Q^{2}/\mu^{*2}, \alpha_{s}(\mu)) = \sum_{k=j}^{\infty} C_{k}(1, \alpha_{s}(Q)) \mathcal{P} \exp\left\{\int_{Q}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_{j}(\alpha_{s}(\mu'))\delta_{kj} + \frac{\beta}{g}\Delta_{kj}(\alpha_{s}(\mu'), \mu'/\mu^{*})\right]\right\}$$

with

$$C_{j}(1,\alpha_{s}(Q)) = \frac{2^{1+j+\gamma_{j}(\alpha_{s})/2}\Gamma\left(\frac{5}{2}+j+\gamma_{j}(\alpha_{s})/2\right)}{\Gamma(3/2)\Gamma\left(3+j+\gamma_{j}(\alpha_{s})/2\right)} c_{j}^{\overline{\text{MS,DIS}}}(\alpha_{s})$$

- $\frac{2^{\cdots}\Gamma(\cdots)}{\Gamma(3/2)\Gamma(\cdots)}$ is result of resumming the conformal tower *j*
- $c_{j}^{\text{MS,DIS}}(\alpha_{s})$ from [Zijlstra, v. Neerven '92, '94, v. Neerven and Vogt '00]
- Finally, evolution of conformal moments is given by \ldots \Rightarrow

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

NNLO DVCS (III)

$$\mu \frac{d}{d\mu} H_j(\cdots, \mu^2) = -\gamma_j(\alpha_s(\mu)) H_j(\cdots, \mu^2)$$
$$- \frac{\beta(\alpha_s(\mu))}{g(\mu)} \sum_{k=0}^{j-2} \eta^{j-k} \Delta_{jk} \left(\alpha_s(\mu), \frac{\mu}{\mu^*} \right) H_k(\cdots, \mu^2)$$

- Δ_{jk} unknown correction, starts at NNLO, and can be suppressed by choice of initial condition — neglected
- γ_i from [Vogt, Moch and Vermaseren '04]

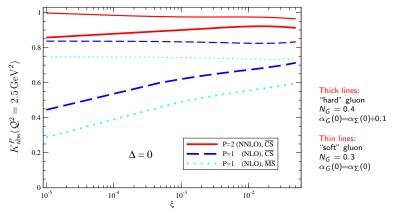
Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

NNLO DVCS (III)

$$\mu \frac{d}{d\mu} H_j(\cdots, \mu^2) = -\gamma_j(\alpha_s(\mu)) H_j(\cdots, \mu^2) - \frac{\beta(\alpha_s(\mu))}{g(\mu)} \sum_{k=0}^{j-2} \eta^{j-k} \Delta_{jk} \left(\alpha_s(\mu), \frac{\mu}{\mu^*} \right) H_k(\cdots, \mu^2)$$

- Δ_{jk} unknown correction, starts at NNLO, and can be suppressed by choice of initial condition — neglected
- γ_i from [Vogt, Moch and Vermaseren '04]
- We have used these expressions to
 - investigate size of NNLO corrections to non-singlet [Müller '05] and singlet [K.K., Müller, Passek-Kumerički and Schäfer '06] Compton form factors
 - perform fits to DVCS (and DIS) data and extract information about GPDs [K.K., Müller and Passek-Kumerički '07]
 Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

Size of Radiative Corrections - Modulus



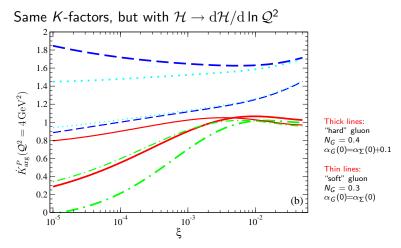
- NLO: up to 40–70% ($\overline{\rm MS}$); up to 30–55% ($\overline{\rm CS}$) ["hard"]
- NNLO: 8–14% ("hard"); 1-4% ("soft")

 $\overline{[CS]}$

(日)

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

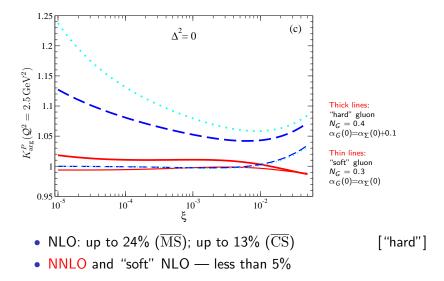
Scale Dependence



- NLO: even 100%
- NNLO: somewhat smaller, but acceptable only for larger ξ

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

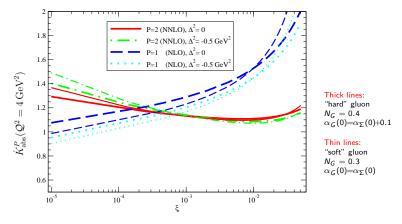
Size of Radiative Corrections - phase



Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

A A A

Scale Dependence - Modulus



- NLO: even 100%
- NNLO: smaller (largest for "hard" gluons)

Kornelija Passek-Kumerički: Fitting DVCS at NLO and beyond ...

• • • •

Fast fitting routine (GeParD)

