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Abstract

The exclusive process e e~ — et e~ p% p% allows to study various
dynamics and factorization properties of perturbative QCD. At moder-
ate energy, we demonstrate how collinear QCD factorization emerges,
involving generalized distribution amplitudes (GDA) and transition dis-
tribution amplitudes (TDA). At higher energies, in the Regge limit of
QCD, we show that it offers a promising probe of the BFKL resumma-
tion effects to be studied at the International Linear Collider (ILC).

1 Introduction: Exclusive processes at high energy QCD

1.1 Motivation , B

Since a decade, there has been much progress in experimental and theo- 0 pr(kr)
retical understanding of hard exclusive processes, including Deeply Vir-

tual Compton Scattering (involving Generalized Parton Distributions) @ pr(ks)
and 7y scattering in fixed target e*p (HERMES, JLab, ...) experiments >

and at colliders, such as eip (H1, ZEUS) or ee~ (LEP, Belle, BaBar, P

BEPC). Meanwhile, the hard Pomeron [1] concept has been developped ~Figure 1: Amplitude for
and tested at inclusive (total cross-section), semi-inclusive (diffraction, ete” —ete pppp.
forward jets, ...) and exclusive (meson production) level, for colliders at very large energy: e®p
(HERA), pp (Tevatron) and e*e~ (LEP, ILC). Here we focus on

VY = Lol (1
with both v* hard, through ete™ — e+e_p% p% with double tagged outoing leptons (Fig.1). It is
a beautiful theoretical laboratory for investigating different dynamics (collinear, multiregge) and

factorization properties of high energy QCD: it allows a perturbative study of GPD-like objects
at moderate s and of the hard Pomeron at asymptotic s.

1.2 From DIS to GDA and TDA in collinear factorization

Deep Inelastic Scattering, as an inclusive process, gives access to the forward amplitude through
the optical theorem. Structure functions can be written as convolution of (hard) Coefficient Func-
tions with (soft) Parton Distributions. Deeply Virtual Compton Scattering and meson electropro-
duction on a hadron yv*h — ~h, h' h, as exclusive processes, give access to the full ampli-
tude,which is a convolution, for —t < s, of a (hard) CF with a (soft) Generalized Parton Distri-
bution [2,3]. Extensions were made from GPDs. First [2,4], the crossed process v* v — h h’ can
be factorized, for s < —t, as a convolution of a (hard) CF with a (soft) Generalized Distribution

Tspeaker



Amplitude describing the correlator between two N

o(k
quark fields and a two hadron state. Second [5], ) ( 'o(k1)
starting from meson electroproduction and per- =
forming ¢ < wu crossing, and then allowing the 5 (k)
initial and the final hadron to differ, we write the @ h p(ks)

amplitude for the process v* h — h” h' as a con-
volution of a (hard) CF with a (soft) Transition Dis-
tribution Amplitude describing the h — &’ transition and with a (soft) Distribution Amplitude
(describing ggh” vertex).

Figure 2: v*(Q1)7"(Q2) — pY(k1)p} (k2)
with collinear factorization in q@p vertices.

We will rely on collinear factorization for our process (1) at each ggp vertex only. At high
, each of the two quarks making the p mesons are almost collinear, flying in the light cone
dlrectlons p1 and ps (used as Sudakov vectors), and their momentum read ¢; ~ z; k; and € ~

Z; ki . The amplitude M is factorized as a convolution of a hard part M g with two p% DAs (see
12

2

Fig.2), defined as matrix elements of non local quarks fields correlator on the light cone

(61 ()] a(x)1"a(0)[0) = ”W/mwfa,qu@
2 Computation at fixed 112

2.1 Direct calculation

We compute [6] the amplitude M following the

Brodsky, Lepage approach [7]. At Born order
(quark exchange) and in the forward case for sim-
plicity, the amplitude M reads?,

&
A

Figure 3: Diagrams contributing to M g for 77 .
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In the case of longitudinally polarized photons, their polarization vectors read, with s = 2p; - po,

e|(q) = éfh + 2;221}?2 and  €)(q2) = 5

Due to QED gauge invariance, the first terms in RHS of (2) do not contribute. In the forward case
discussed here, the number of diagrams then reduces to 4, as illustrated in Fig.3. They result into
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For transversally polarized photons, no simplification occurs and the 12 diagrams give
1
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The z; integrations have no end-point singularity (Q? are non-zero and DAs vanishes at z; = 0).

2.2 Interpretation in terms of QCD Factorization
2.2.1  GDA for a transverse photon in the limit A%, < W? < Maxz(Q%,Q3)
When W2 is smaller than the highest photon virtuality, the direct calculation (4) simplifies in*

1
C 1 1
TaﬁgTaﬁz W/ lesz ( Q2 —
0 21+21—2 z1 + 21—

showing that the hard amplitude N h k.

M can be factorized as a con-

volution between a hard coeffi- o

cient function Ty and a GD Ap, “ h (k)
itself perturbatively computable
(Fig.4), extending the results of
[8]. This is proven at Born order by computing perturbatively the GDA from its definition

u
k.
“ (>)
h1 p(k2)

Figure 4: Factorisation of the amplitude in terms of a GDA.
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with the kinematics fixed according to Fig.5. W ? being hard, the
GDA can be factorized into Hard part @ DA DA (see Fig.6), as

29> C 11
DPLPL (7, ( = 1, W2) — —%/dzz d(2) P(22) [2_22 — %} . Figure 5: GDA Kinematics.
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Figure 6: Perturbative GDA factorization.

In forward kinematics, the QCD Wilson line (last term in

X 1
Fig.6) vanishes. The Born order hard part is (see Fig.7) :@>® :]>® }E;]>®
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Figure 7: Hard part Ty at lowest order.

p(k1)

2.2.2  TDA for longitudinal photon in the limit Q% > Q3 (or Q? < Q)1 \ "

The amplitude M = T“ p D2 P13 (3) can be interpreted in this limit

as a convolution M =TDA ® CF ® DA, according to .
C / / 1 1 o |
Taﬁpgaplﬁ = —i—/dx /dzl [_ + } o(21)
2_1 ) Zilx =&  z(z+¢) e 175\ olk2)
x — 1+2
X Ne [@(1 >z >8)¢ <1 — §> —0(-{zr>-1)¢ (1 — 5)]7 Figure 8: TDA kinematics.

the TDA being defined through the usual GPD kinematics (see Fig.8), with ny = (1 + &)p; and
ng = 1 i 5, defining x, £ as momentum fraction along ns. This factorisation (see Fig.9a) is proven
at Born order by computing perturbatively the TDA v* — pOL defined as

—z/2
dz— .
s € g ka2 /2)h exp{-ieQy [ dy, A ())az/2)h" (@)
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where the QED Wilson line is explicitly indicated (QCD Wilson line gives no contribution).
Since Q% hard, the TDA can be factorized (see Fig.9b) as
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Figure 9: a: Factorization of the amplitude in terms of a TDA. b: Perturbative TDA factorization.



The Hard term reads, at Born order (see Fig.10),

Ty(e1,0) = i, 5 e Qg %(gﬁe“(q @
c W1
1

1

Figure 10: Hard part T at lowest order.

3 Computation at large 172

The dynamics of QCD in the perturbative Regge limit [9] is governed by gluons. BFKL en-
hancement effects are expected to be important at large rapidity. The exclusive process (1) tests
this limit [10-12], for both QZZ hard and of the same order (to suppress collinear dynamics a la
DGLAP [13] and ERBL [14]), giving access to the full non-forward Pomeron structure, in rela-
tion with saturation studies, where a full impact parameter picture is needed. Increasing s«
for fixed values 3 and Q3 causes transition from the linear to non-linear (saturated) regime.
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Figure 11: 7} 17} o — p} P} (abc)and ete™ — etep) pf (d) differential cross-sections.

When sy« > —t, Q%, Q%, we rely on the impact representation which reads, at Born order,

M= is d> k )=o) (o gy i@ k) (g
(2m)*k? (r — k)2

where the impact factors 77T are rational functions of the transverse momenta (k,r). The 2-d

integration is treated analytically, relying on conformal transformations in the transverse momen-
tum plane. The integrations over momentum fractions z; and 29 (hidden in J) are performed
numerically. We use (Q1(Q)2 as a scale for a,g. As displayed in Fig.11a,b,c, cross-sections are
strongly peaked at small Q2 and small ¢, and longitudinally polarized photons dominates. The



non-forward Born order cross-section for eTe™ — e+e_p% p% is obtained with the help of the
equivalent photon approximation. Defining ¥; as the longitudinal momentum fractions of the
bremsstrahlung photons, one finds that gere et prpr gets its main contribution from the low
y and Q2 region, which is the very forward region. At ILC, /3,4, = 500 GeV, with 125 fb~!
per year. The measurement seems feasible since each detector design includes a very forward
electromagnetic calorimeter for luminosity measurement, with tagging angle for outgoing lep-
tons down to 5 mrad. In Fig.11d, we display our results within the Large Detector Concept. We
obtain ¢/’ = 34.1fb and 4.310% events per year. The LL BFKL enhancement is enormous
but not trustable, since it is well known that NLL BFKL is far below LL. Work to implement
resummed LL BFKL effects [15] is in progress, with results in accordance with the NLL based
one [16]. The obtained enhancement is less dramatic (~ 5) than with LL BFKL, but still visible.
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