Faster IBP solving via RATRACER and tricks

Vitaly Magerya

Institute for Theoretical Physics (ITP), Karlsruhe Institute of Technology (KIT)

Hamburg January 24, 2023

A typical calculation in HEP

Basic steps of calculating scattering matrix elements:

1. List Feynman diagrams for the process.

$$\Rightarrow \mathcal{M} = \sqrt{2} + \sqrt{2} + \dots$$

2. Project the diagrams onto scalar integrals.

$$\Rightarrow \mathcal{M} = C_1 + C_2 + C_3 + \dots$$

3. Reduce to master integrals via Integration-by-Part (IBP) relations.

$$\Rightarrow \mathscr{M} = C_1' - + C_2' - + \dots$$

- 4. Evaluate the loop integrals.
 - * Analytically:
 - Direct integration (by hand, with HYPERINT, etc).
 - * Differential equations for master integrals (e.g. FUCHSIA, LIBRA). Needs IBP.
 - * Dimensional recurrence relations (SUMMERTIME, DREAM). Needs IBP.
 - * Numerically:
 - * Sector decomposition (PYSECDEC, FIESTA, etc).
 - * Mellin-Barnes representation (MB, AMBRE, etc).
 - * Numerical differential equations (DIFFEXP, AMFLOW, etc). Needs IBP.
- 5. Integrate over the kinematics.

IBP relations

An IBP integral family with L loop momenta \vec{l}_i , and E external momenta \vec{p}_i , is the set of Feynman integrals

$$I_{\nu_1,\nu_2,\dots,\nu_N} \equiv \int \frac{\mathrm{d}^d \vec{l}_1 \cdots \mathrm{d}^d \vec{l}_L}{D_1^{\nu_1} \cdots D_N^{\nu_N}},$$

where v_i are the "indices" (denominator powers), their number is

$$N \equiv L(L+1)/2 + LE$$
,

and the denominators themselves are

$$D_i \equiv \left(\text{linear combination of } \vec{l}_i \text{ and } \vec{p}_k\right)^2 - m_i^2 + i0.$$

The idea: shifting \vec{l}_k by any vector \vec{v} should not change I:

$$\lim_{\alpha \to 0} \frac{\partial}{\partial \alpha} I \left(\vec{l}_k \to \vec{l}_k + \alpha \vec{v} \right) = \int \mathrm{d}^d \vec{l}_1 \cdots \mathrm{d}^d \vec{l}_L \frac{\partial}{\partial l_L^\mu} \frac{v^\mu}{D_1^{\nu_1} \dots D_N^{\nu_N}} = 0.$$

These are the IBP relations (for all k and all \vec{v} , L(L+E) in total).

IBP relations example

For an example massless triangle topology:

$$I_{a,b,c} \equiv \frac{\vec{p}_1}{\vec{l}} = \int \frac{d^d \vec{l}}{\left(\vec{l}^2\right)^a \left((\vec{l} - \vec{p}_1)^2\right)^b \left((\vec{l} + \vec{p}_2)^2\right)^c},$$

$$\vec{p}_1^2 = \vec{p}_2^2 = 0, \qquad 2\vec{p}_1 \cdot \vec{p}_2 = s.$$

For k=1 and $\vec{v}=\vec{p}_1$:

$$(b-a)I_{a,b,c} - csI_{a,b,c+1} - cI_{a-1,b,c+1} - bI_{a-1,b+1,c} + cI_{a,b-1,c+1} + aI_{a+1,b-1,c} = 0.$$

For k = 1 and $\vec{v} = \vec{p}_2$:

$$(a-c)I_{a,b,c} + bsI_{a,b+1,c} + cI_{a-1,b,c+1} + bI_{a-1,b+1,c} - bI_{a,b+1,c-1} - aI_{a+1,b,c-1} = 0.$$

For k = 1 and $\vec{v} = \vec{l}$:

$$(d-2a-b-c)I_{a,b,c}-cI_{a-1,b,c+1}-bI_{a-1,b+1,c}=0.$$

Laporta algorithm

To solve IBP relations in practice use the *Laporta algorithm*: [La

[Laporta '00]

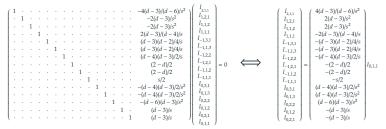
- 1. Substitute integer values for the indices v_i into the IBP relations, obtaining a large linear system with many different $I_{\nu_1 \dots \nu_N}$.
- 2. Define an ordering on $I_{\nu_1 \dots \nu_N}$ from "simple" to "complex" integrals.
- 3. Perform Gaussian elimination on the linear system, eliminating the most "complex" integrals first.
- 4. A small number of "simple" integrals will remain uneliminated.
 - ⇒ These are the master integrals. The rest will be expressed as their linear combinations.

IBP reduction example

$$I_{a,b,c} \equiv - b \atop c = p_1, \qquad p_1^2 = p_2^2 = 0, \qquad 2p_1p_2 = s.$$

$$(d-4)_{1,1,1} - l_{0,2,1} - l_{0,1,2} = 0 \atop sl_{1,2,1} - sl_{0,1,2} + l_{0,1,2} = 0 \atop sl_{1,2,1} - sl_{1,1,2} = 0 \atop -l_{0,2,1} - l_{0,1,2} = 0 \atop -l_{0,3,1} + l_{0,1,2} = 0 \atop -l_{0,3,1} + l_{0,1,2} = 0 \atop -l_{0,3,1} - l_{0,1,2} + l_{0,1,2} = 0 \atop -l_{0,2,1} - l_{0,1,2} + l_{0,1,2} = 0 \atop -l_{0,2,1} - l_{0,1,2} + l_{0,1,2} = 0 \atop -l_{0,2,2} - l_{0,1,1,2} + (a_{0,1} - a_{0,1,1} - a_{0,1,1,2} - a_{0,2,1} - a_{0,1,2} - a_{0,$$

After Gaussian elimination (108 operations, $\sim N_{\rm integrals}^2$):



IBP reduction as a bottleneck

To match LHC experimental precision the theory requires 2-loop corrections.

For future colliders: 3-loop corrections.

[Freitas '21]

	1 loop	2 loops	3 loops	
4 legs	~100 diagrams	~2K diagrams	~50K diagrams	
	3 families	24 families	219 families	
	4 denominators	7+2 denominators	10+5 denominators	
	2 mass scales	2 mass scales	2 mass scales	
5 legs	~1K diagrams	~30K diagrams	~ <mark>800K</mark> diagrams	
	12 families	180 families	2355 families	
	5 denominators	8+3 denominators	11+7 denominators	
	5 mass scales	5 mass scales	5 mass scales	

- * Lines in a Feynman diagram: $N_{\text{lines}} = 3L + E 2$.
- * Denominators per family: $N_{\text{denominators}} = L(L+1)/2 + LE$.
- * Mass scales per family: $N_{\text{scales}} = E(E-1)/2 1 + N_{\text{massive legs + masses}}$. Optimistic reduction time estimate (symbolic reduction):

$$T \sim \frac{1}{\text{performance}_S} N_{\text{families}} \underbrace{N_{\text{integrals per family}}^2}_{\text{exp}(N_{\text{denominators}})} \underbrace{N_{\text{monomials per term}}^2}_{\text{exp}(N_{\text{scales}})} N_{\text{digits per monomial}}$$

Improving IBP reduction time

$$T \sim \frac{1}{\text{performance}_S} \, N_{\text{families}} \, N_{\text{integrals per family}}^2 \, N_{\text{monomials per term}}^2 \, N_{\text{digits per monomial}}^2 \, N_{\text{digits per monomial}}^2 \, N_{\text{monomials per term}}^2 \, N_{\text{digits per monomial}}^2 \, N_{\text{digits pe$$

Strategies to reduce *T*:

- 1. Choose master integrals that minimize the result size.
 - * Use *d*-factorizing bases that ensure the factorization of *d* in the denominators of IBP coefficients. [Usovitsch'20; Smirnov, Smirnov'20]
 - * Consider using quasi-finite bases. [von Manteuffel, Panzer, Schabinger '14]
 - \Rightarrow Lowers $N_{\text{monomials per term}}$ and $N_{\text{digits per monomial}}$.
- 2. Combine IBP relations (using syzygies) to eliminate integrals with raised (or lowered) indices. [Gluza, Kajda, Kosower'10; Scahbinger'11]
 - * Pre-solves the IBP system symbolically, lowering $N_{\text{integrals per family}}^2$
- 3. Set some of the variables to fixed numbers.
 - * E.g. reduce with m_H^2 set to $\frac{12}{23} m_t^2$.
 - \Rightarrow Decreases N_{scales} and $N_{\text{monomial per term}}$, but increases $N_{\text{digits per monomial}}$.
- 4. Set all of the variables to numbers.
 - * I.e. perform IBP reduction separately for each phase-space point, and interpolate in between. [Jones, Kerner et al '18; Chen, Heinrich et al '19, '20]
 - \Rightarrow Decreases $N_{\rm monomial\,per\,term}$ to 1, but increases $N_{\rm digits\,per\,monomial}.$
- 5. Use modular arithmetic methods. [von Manteuffel, Schabinger '14]

Modular arithmetic methods

To find a symbolic form of a rational function $f(x_1, ..., x_N)$:

- * Evaluate f modulo a prime number many times, with x_i set to integers.
- * Reconstruct the exact symbolic form of f from the obtained values.

Example: if we have an unknown f(x), and we have evaluated

$$f(11) = 139 \, (\bmod{\,997}) \, , \qquad f(65) = 479 \, (\bmod{\,997}) \, , \\ f(38) = 350 \, (\bmod{\,997}) \, , \qquad f(92) = 115 \, (\bmod{\,997}) \, ,$$

then we can use *polynomial interpolation* to find a polynomial form of f:

$$f(x) = 618 + 979 x + 486 x^2 + 41 x^3 \pmod{997}$$
,

and then rational function reconstruction to find an equivalent rational form:

$$f(x) = \frac{996 + 333x}{1 + x} \pmod{997},$$

and finally rational number reconstruction to find the rational coefficients:

$$f(x) = \frac{-1 + \frac{2}{3}x}{1 + x} \pmod{997}.$$

Guess that this is the true form of f(x); evaluate more times to verify.

Performance of IBP via modular arithmetic

For modular methods, total time for reconstruction:

$$\frac{1}{\mathsf{performance}_R} \, N_{\mathsf{families}} \, \underbrace{N^2_{\mathsf{integrals} \, \mathsf{per} \, \mathsf{family}}}_{\to \, N_{\mathsf{amplitudes}} \, N_{\mathsf{masters}}}^2 \, N^2_{\mathsf{monomials} \, \mathsf{per} \, \mathsf{term}} \, N_{\mathsf{digits} \, \mathsf{per} \, \mathsf{monomials}}$$

Total time for evaluation:

$$\underbrace{\frac{T_{\text{Single evaluation}}}{1} N_{\text{families}} N_{\text{integrals per family}}^2}_{\text{performance}_F} N_{\text{families}}^2 N_{\text{integrals per family}}^2 N_{\text{monomials per term}}^{\frac{1}{2}} N_{\text{digits per monomial}}^2$$

- * On conventional computers, performance_E > performance_S.
- * The evaluation can be naturally parallelized.
- * Reducing whole amplitudes instead of individual integrals is needed to minimize the reconstruction time.

Available software

IBP solvers that use modular arithmetic:

* FINRED (private implementation)

[von Manteuffel et al]

* FIRE6

- [Smirnov, Chuharev '19]
- * Does not provide multivariate reconstruction.
- * KIRA when used with FIREFLY
 - [Klappert, Lange, Maierhöfer, Usovitsch '20; Klappert, Klein, Lange '20]
- * FINITEFLOW [Peraro '19]
 - * A framework for arbitrary computations.
- * CARAVEL [Cordero, Sotnikov et al '20]
 - * A framework for amplitude computations.

Now also introducing:

* RATRACER (with KIRA and FIREFLY)

[V.M. '22]

RATRACER overview

RATRACER ("Rational Tracer"): a program for solving systems of linear equations using modular arithmetic, faster. [V.M. '22; github.com/magv/ratracer]

- * Accepts arbitrary systems of linear equations: IBP relations, dimensional recurrence relations, amplitude definitions, etc.
- * Initially developed for solving IBP systems for massive 5-point 2-loop diagrams.
- * Improves the evaluation time, reconstruction is still done by FIREFLY.
- * Intended usage:
 - 1. Use KIRA (or LITERED, or custom code) to export IBP relations.
 - 2. Use RATRACER to load them and solve them.

The performance improvement is based on simple observations:

- * IBP equation solvers that use modular arithmetic (KIRA+FIREFLY, FIRE6) spend lots of time managing data structures that represent equations.
- * Each evaluation re-creates the same data structures in the same way.
- ⇒ Eliminate the data structures: record the list of arithmetic operations ("trace") performed during the first evaluation, and just replay the list for subsequent evaluations.

Rational traces

For
$$I_{a,b,c}(s,d) \equiv \underbrace{\begin{array}{c} b \\ c \end{array}}_{p_2}^{p_1}$$

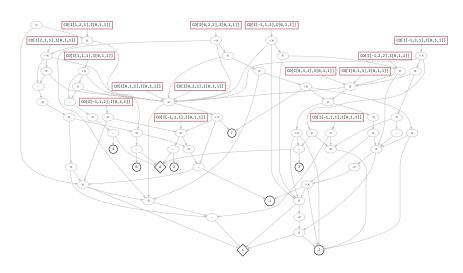
the *trace* of the IBP solution might look like:

```
t0 = var'd'
                          t54 = addmul \ t53 \ t27 \ t44
t1 = int 4
                           t55 = mul \ t25 \ t44
                          t56 = addmul t55 t25 t44
t2 = sub t0 t1
                          t57 = mul t23 t44
t3 = int 1
                         t58 = addmul t57 t23 t44
t4 = var 's'
                          t59 = mul t20 t58
t5 = neg t4
t6 = int 6
                          t60 = mul \ t16 \ t59
                          save t60 as CO[I[1,1,2],I[0,1,1]]
t7 = sub t0 t6
                         save t59 as CO[I[1,2,1],I[0,1,1]]
t8 = int -1
                          save t58 as CO[I[2,1,1],I[0,1,1]]
t9 = int 2
                         save t56 as CO[I[1,1,1],I[0,1,1]]
t10 = int -2
t11 = sub t0 t9
                          save t54 as CO[I[-1,1,3],I[0,1,1]
                           save t52 as CO[I[-1,2,2],I[0,1,1]
t12 = int 3
                           save t51 as CO[I[-1,3,1],I[0,1,1]
t13 = sub t0 t12
                         save t46 as CO[I[0,1,3],I[0,1,1]]
t14 = mul t4 t10
                           save t49 as CO[I[0,2,2],I[0,1,1]]
t15 = neginv t5
t16 = mul t4 t15
                           save t47 as CO[I[-1,1,2],I[0,1,1]
                           save t46 as CO[I[0,3,1],I[0,1,1]]
t17 = sub t8 t16
                           save t42 as CO[I[-1,2,1],I[0,1,1]
t18 = mul t5 t16
t19 = neginv t17
                           save t44 as CO[I[0,1,2],I[0,1,1]]
t20 = mul \ t7 \ t19
                          save t44 as CO[I[0.2.1].I[0.1.1]]
[...]
                           save t45 as CO[I[-1,1,1],I[0,1,1]
```

Rational traces

For
$$I_{a,b,c}(s,d) \equiv \underbrace{\qquad \qquad }_{c} \underbrace{\qquad \qquad }_{p_2}^{p_1}$$

the *trace* of the IBP solution might look like:



Trace optimizations

Given a trace, RATRACER can optimize it using:

* Constant propagation:

$$\begin{cases} \text{t11 = int 2} \\ \text{t12 = int 3} \\ \text{t13 = mul t11 t12} \end{cases} \implies \begin{cases} \text{t11 = int 2} \\ \text{t12 = int 3} \\ \text{t13 = int 6} \end{cases}$$

* Trivial operation simplification:

$$\begin{cases} t11 = int -1 \\ t12 = mul \ t11 \ t7 \end{cases} \implies \begin{cases} t11 = int -1 \\ t12 = neg \ t7 \end{cases}$$

* Common subexpression elimination:

$$\begin{cases} \texttt{t11} = \texttt{add} \ \texttt{t5} \ \texttt{t7} \\ \texttt{t12} = \texttt{add} \ \texttt{t5} \ \texttt{t7} \end{cases} \qquad \Rightarrow \quad \begin{cases} \texttt{t11} = \texttt{add} \ \texttt{t5} \ \texttt{t7} \\ \texttt{t12} = \texttt{t11} \end{cases}$$

* Dead code elimination:

$$\begin{cases} \texttt{t11} = \texttt{add} \ \texttt{t5} \ \texttt{t7} \\ [\dots, \ \texttt{t11} \ \texttt{is unused}] \end{cases} \implies \begin{cases} \texttt{nop} \\ [\dots] \end{cases}$$

- * Especially useful if a user wants to select a subset of the outputs.
- * "Finalization":

st Needed to minimize the temporary memory needed for the evaluation.

Trace transformations

Given a trace, RATRACER can:

- * Set some of the variables to numbers or expressions.
 - * E.g. set mh2 to 12/23*mt2, d to 4-2*eps, or s to 13600.
 - * No need to remake the IBP system just to set a variable to a number.
- * Select any subset of the outputs, and drop operations that don't contribute to them (via dead code elimination).
 - * Can be used to split the trace into parts.
 - * Each part can be reconstructed separately (e.g. on a different machine).
 - * See master-wise and sector-wise reduction in other solvers.
- * Expand the result into a series in any variable.
 - $\ast~$ E.g. in practice only the leading few orders in $\mathcal E$ are needed.
 - \Rightarrow Expand in ε up to e.g. $\mathscr{O}(\varepsilon^0)$, don't compute the higher orders.
 - * Done before the reconstruction, so one less variable to reconstruct in, but potentially more expressions (depending on the truncation order).

Truncated series expansion

For
$$I_{a,b,c}(s,d) \equiv \underbrace{\qquad \qquad }_{c} \underbrace{\qquad \qquad }_{p_{2}}^{p_{1}}$$
 before expansion:

- * Variables to reconstruct in: s and d.
- * Trace outputs: "CO[I[1,1,1],I[0,1,1]]", etc:

$$I_{1,1,1} = \text{CO[I[1,1,1],I[0,1,1]]} I_{0,1,1}.$$

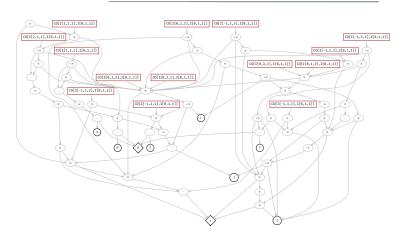
After expansion in ε to $\mathscr{O}(\varepsilon^0)$:

- st Variables to reconstruct in: only s.
- * Trace outputs: "ORDER [CO [I [1,1,1], I [0,1,1], eps $^-1$]", etc:

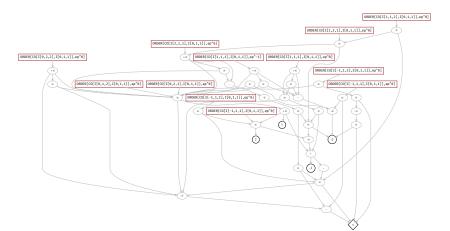
$$\begin{split} I_{1,1,1} &= \text{ORDER} \left[\text{CO} \left[\text{I} \left[1,1,1 \right], \text{I} \left[0,1,1 \right], \text{eps} \right] -1 \right] \, \varepsilon^{-1} \, I_{0,1,1} \\ &+ \text{ORDER} \left[\text{CO} \left[\text{I} \left[1,1,1 \right], \text{I} \left[0,1,1 \right], \text{eps} \right] \right] \, \varepsilon^{0} \, I_{0,1,1}. \end{split}$$

- * Might be slower to evaluate, but fewer evaluations are needed.
 - \Rightarrow The more complicated the problem, the higher the speedup.

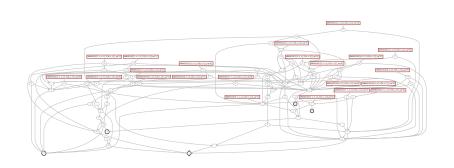
Expansion:	_	$\mathscr{O}(\varepsilon^0)$	$\mathscr{O}(\varepsilon^1)$	$\mathscr{O}\left(\varepsilon^2\right)$
Operations:	61	40	73	87
Outputs:	15	13	26	33



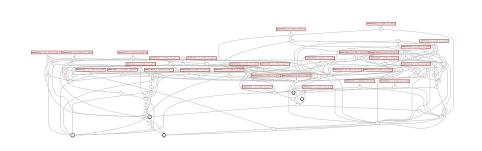
Expansion:	_	$\mathscr{O}\left(\varepsilon^{0}\right)$	$\mathscr{O}(\varepsilon^1)$	$\mathscr{O}\left(\varepsilon^2\right)$
Operations:	61	40	73	87
Outputs:	15	13	26	33



Expansion:	_	$\mathscr{O}\left(\varepsilon^{0}\right)$	$\mathscr{O}\left(\varepsilon^{1}\right)$	$\mathscr{O}\left(\varepsilon^2\right)$
Operations:	61	40	73	87
Outputs:	15	13	26	33



Expansion:	_	$\mathscr{O}\left(\varepsilon^{0}\right)$	$\mathscr{O}\left(\varepsilon^{1}\right)$	$\mathscr{O}\left(\varepsilon^2\right)$
Operations:	61	40	73	87
Outputs:	15	13	26	33



RATRACER benchmarks

For IBP reduction of every integral (i.e. not single amplitudes):

	Evaluation speedup vs. KIRA+FIREFLY	$\frac{t_{\rm reconstruction}}{t_{\rm evaluation}}$	Total speedup vs. KIRA+FIREFLY	Total speedup vs. KIRA+FERMAT	Total speedup vs. FIRE6	$\mathscr{O}(\varepsilon^0)$ speedup
m ₁ m ₂	20	3.3	5.2	1.2	∞?	3.2
m_2 m_1	7.8	1/3.3	6.0	37	∞?	2.7
s m ₁	26	25	1.7	1/3.3	1.8	2.3
m	9.6	8.8	5.2	2.6	8.8	4.3

[github.com/magv/ibp-benchmark]

Resulting performance:

- * Consistent ~10x speedup in modular evaluation over KIRA+FIREFLY.
- * Up to ~5x speedup in total reduction time over KIRA+FIREFLY for complicated examples, 1x-30x over KIRA+FERMAT, ∞x over FIRE6.
- * A ~3x speedup on top of that with ε expansion.

Problems with big traces

Problem:

- * The size of a trace is proportional to the number of operations.
 - * I.e. $\sim N_{\rm integrals}^2$ for sparse IBP systems.
 - ⇒ Megabytes to hundreds of gigabytes for problems of interest.
- * Computer memory is expensive and limited.

Solution:

- 1. Always keep the trace on disk, never load it fully into memory.
 - * Compress it on disk for storage (via ZSTD, GZIP, LZMA, etc).
- 2. During the evaluation read the trace piece by piece.
- During the optimization make sure the algorithms have bounded memory usage.
- ⇒ Multi-GB traces are supported easily in RATRACER.

Guessing the denominators

The denominators of IBP coefficients factorize into few unique factors.

If some candidate factors are known, then we can find the powers of those factors in each coefficient: [Heller, von Manteuffel '21]

- 1. Choose a factor to search for, e.g. (d-6).
- 2. Set all variables to random values, e.g. d = 95988281, s = 75579811.

$$\Rightarrow$$
 $(d-6) = 95988275 = 5^2 \cdot 103 \cdot 37277.$

3. Evaluate the IBP solution using these numbers.

$$* \; \; \text{E.g. CO} \left[I_{2,1,1} \text{ , } I_{0,1,1} \right] = \frac{383953112}{548314574947073136171275} = \frac{2^3 \cdot 1117 \cdot 42967}{5^2 \cdot 103 \cdot 37277 \cdot 75579811^2}.$$

4. Find common prime factors, identify their powers.

*
$$CO[I_{2,1,1}, I_{0,1,1}] \sim (d-6)^{-1} s^{-2}$$
.

Automated implementation: toos/guessfactors from RATRACER.

To find the set of possible factors:

- * Reconstruct a simpler subset of the coefficients. (A few per sector).
- ⇒ Easy with RATRACER, just select individual outputs.

Once the factors are found, *speedup the reconstruction* by dividing them out from the expressions.

* I.e. reconstruct CO
$$[I_{2,1,1},I_{0,1,1}]/(d-6)/s^2$$
, not just CO $[I_{2,1,1},I_{0,1,1}]$.

Usage for IBP reduction

1. Use KIRA to generate the IBP equations.

```
$ cat >config/integralfamilies.yaml <<EOF</pre>
                                                              $ cat >export-equations.yaml <<EOF
integralfamilies:
                                                              jobs:
  - name: "I"
                                                               - reduce_sectors:
    loop_momenta: [1]
                                                                  reduce:
    top_level_sectors: [b111]
                                                                   - {sectors: [b111], r: 4, s: 1}
    propagators:
                                                                  select_integrals:
                                                                   select_mandatory_recursively:
                                                                    - {sectors: [b111], r: 4, s: 1}
      - ["l-p1", 0]
      - ["1+p2", 0]
                                                                  run_symmetries: true
                                                                  run_initiate: input
$ cat >config/kinematics.yaml <<EOF</pre>
kinematics:
                                                              $ kira export-equations.yaml
 outgoing_momenta: [p1, p2]
kinematic_invariants: [[s, 2]]
scalarproduct_rules:
 - [[p1,p1], 0]
  - [[p2,p2], 0]
 - [[p1,p2], "s/2"]
# symbol to replace by one: s
FOF
```

2. Use RATRACER to create a trace with the solution.

```
Tauracer \ load-equations input_kira/I/SYSTEM_I_0000000007.kira.gz \ load-equations input_kira/I/SYSTEM_I_0000000006.kira.gz \ solve-equations choose-equation-outputs --maxr=4 --maxs=1 \ optimize finalize save-trace I.trace.gz
```

3. Optionally expand the outputs into a series in ε .

```
$ ratracer \
    set d '4-2*eps' load-trace I.trace.gz \
    to-series eps 0 \
    optimize finalize save-trace I.eps0.trace.gz
```

4. Use RATRACER (+FIREFLY) to reconstruct the solution.

```
$ ratracer \
  load-trace I.eps0.trace.gz \
  reconstruct --to=I.solution.txt --threads=8 --inmem
```

Usage as a library

RATRACER is built to support custom user-defined traces.

Any rational algorithm can be turned into a trace (via the C++ API).

Usage:

#include <ratracer.h> int main() { Tracer tr = tracer init(): Value x = tr.var(tr.input("x")); Value y = tr.var(tr.input("y")); Value x sgr = tr.pow(x, 2); Value expr = tr.add(x sgr, tr.mulint(v, 3)): $/* expr = x^2 + 3y */$ tr.add_output(expr, "expr"); tr.save("example.trace.gz"); return 0:

API:

```
struct Value { uint64_t id; uint64_t val; };
struct Tracer {
    Value var(size t idx):
    Value of int(int64 t x):
    Value of_fmpz(const fmpz_t x);
    bool is_zero(const Value &a);
    bool is_minus1(const Value &a);
    Value mul(const Value &a, const Value &b):
    Value mulint(const Value &a, int64 t b):
    Value add(const Value &a, const Value &b);
    Value addint(const Value &a, int64_t b);
    Value sub(const Value &a, const Value &b):
    Value addmul(const Value &a.
                  const Value &b1,
                  const Value &b2):
    Value inv(const Value &a):
    Value neginv(const Value &a);
    Value neg(const Value &a):
    Value pow(const Value &base, long exp);
    Value div(const Value &a, const Value &b);
    void assert int(const Value &a. int64 t n):
    void add output(const Value &src. const char *name);
    size_t input(const char *name, size_t len);
    size_t input(const char *name);
    int save(const char *path);
    void clear():
};
Tracer tracer_init();
```

RATRACER future plans

For very large examples *main memory speed becomes the bottleneck* for the modular evaluation. So:

* Investigate optimizing traces to improve memory access patterns.

For other examples RATRACER speeds up the evaluation so much that the modular reconstruction in FIREFLY becomes the bottleneck. So:

- * Reduce the overhead in FIREFLY to speed up simpler examples.
- * Improve paralelizability in FIREFLY to help with complicated examples.
- \Rightarrow Ongoing collaboration with FIREFLY and KIRA authors.

Once denominators are known, the results can be partial-fractioned:

- * Known to reduce final expression size in some cases. [De Laurentis, Page '22]
- * Pending implementation & investigation.

Summary

Solving IBP equation systems faster:

- * Spend time on choosing better master basis.
- * IBP-reduce amplitudes, not individual integrals.
- * Use Kira + Ratracer + FireFly.
- st Expand the coefficients in a series in arepsilon up to the needed order.
- * Guess the denominators of the coefficients.

RATRACER:

- * Faster modular evaluation of linear system solutions.
- * Trace optimization, transformation, slicing and dicing.
- Available at github.com/magv/ratracer
- * TODO: faster evaluation, faster reconstruction, more tricks.