

GALACTIC BULGE

Pevatrons: Where are they hiding?

Disclaimer: The material contained in this document is based upon work supported by a National Aeronautics and Space Administration (NASA) grant or cooperative agreement. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of NASA. The material is based upon work supported by NASA under award number 80GSFC21M0002.

THE SUN

I get paid through CUA. I do not share their views nor support their transphobic, homophobic, and sexist policies.

https://www.nature.com/articles/490024a CENTRAL BLACK HOLE

MOLECULAR CLOUDS

Henrike Fleischhack CUA*/NASA GSFC/CRESST II December 16th 2022 **DESY** Astroparticle Seminar

SPIRAL ARMS

STAR-FORMING REGIONS

GALACTIC PORTRAIT

This artist's impression, based on the latest data from telescopes and simulations, shows the Milky Way viewed from outside the Galaxy.

- **1. Introduction: What are PeVatrons?**
- 2. Messager 1: Protons
- 3. Messager 2: Neutrinos
- 4. Messager 3: Photons
 - a. Gamma-ray astronomy with HAWC
 - b. Multi-Wavelength analysis of SNR G106.3+2.7
- **5. Future prospects**

Content

What are PeVatrons?

Altitude Radiation

- Hess & Kohlhörster 1912:

Cosmic Rays

Cosmic rays are charged particles impinging upon the Earth's atmosphere from all directions.

Primary cosmic ray

Secondary cascade

https://www.vox.com/the-highlight/2019/7/16/17690740/ cosmic-rays-universe-theory-science

Cosmic Rays and the Galaxy

Cosmic rays interact with:

- Star formation,
- Magnetic fields,

and

Structure formation
 In the Galaxy

Image: https://pos.sissa.it/395/087/

Cosmic-Ray Energies

Image: http://w3.iihe.ac.be/~aguilar/PHYS-467/PA3.html

Cosmic-Ray Energies

Image: http://w3.iihe.ac.be/~aguilar/PHYS-467/PA3.html

Cosmic-Ray Energies

PeVatrons are:

- Galactic CR sources
- accelerating protons
- to **PeV** energies $(10^{15} \text{ eV} = 10^{6} \text{ GeV})$

Image: http://w3.iihe.ac.be/~aguilar/PHYS-467/PA3.html

Particle Accelerators

Terrestrial accelerators:

- LHC: protons ~ $6.5*10^{12} \text{ eV}$
- TeVatron: protons ~ 10¹² eV
- Decades of planning.
- Thousands of engineers and scientists.
- Active for a few decades.

Cosmic accelerators:

- Galactic: protons ~10¹⁵ eV
- Extragalactic: protons ~ 10²⁰ eV
- No engineers and scientists involved.
- Can be active for seconds to millions of years.

Diffuse PeV protons near the GC

H.E.S.S. 2016: <u>https://www.nature.com/articles/nature17147</u>

Diffuse PeV protons near the GC

Gamma-rays >50 TeV: **PeV** protons

H.E.S.S. 2016: <u>https://www.nature.com/articles/nature17147</u>

Gamma-ray **morphology**: Proton **diffusion** from Sgr A*

Cosmic Accelerators

Requirements:

- **Engine**: Shocks or magnetic reconnection
- **Fuel**: Charged particles lacksquare
- **Container**: magnetic field (confinement)
- Energy budget
- Lifetime \bullet

Candidates source classes:

- Supernova remnants
- Pulsars and pulsar wind nebulae
- Starforming regions

PeVatrons as multi-messenger sources

e

Relativistic D

Gas

&

Dust

π°

 π^{\pm}

celetat

Charged particles deflected by galactic magnetic fields

Images: <u>https://legacy.ifa.hawaii.edu/info/press-releases/ASASSN_IceCube/</u> <u>https://solarsystem.nasa.gov/resources/822/cassiopeia-a-supernova-remnant/</u> <u>https://science.nasa.gov/get-involved/toolkits/spacecraft-icons</u> 1 PeV protons plus gas/dust produce
~100 TeV photons and
~50 TeV Neutrinos

Messager 1: Protons Cosmic-ray acceleration in SNRs

SNRs as Particle Accelerators

SNRs likely produce the **bulk of Galactic CR**:

- Sufficient energy budget to maintain GCR lacksquarepopulation.
- Strong shocks \rightarrow diffusive shock acceleration.

Isolated SNRs accelerate CR up to TeV energies.

Higher E_{max} achieved via:

- Young SNRs with fast shocks.
- CR-induced magnetic field amplification.
- Superbubbles and collective effects in massive stellar clusters.

Image: Morlino 2021, <u>https://doi.org/10.22323/1.395.0444</u>

T. Vieu, B. Reville 2022: https://doi.org/10.1093/mnras/stac3469

Messager 2: Neutrinos

Neutrinos as smoking guns

- ~50 TeV neutrinos guaranteed to accompany gamma rays from PeVatrons.
- Neutrinos can be traced back to their sources. lacksquare
- So far, no* significant neutrino signal from the Galaxy.
- Current neutrino observatories **not sensitive enough** to detect PeVatrons.

Galactic neutrinos?

0°-

-45°

Still no sensitivity to individual PeVatrons.

135°

90°

 \bigcirc

45°

180°

Kovalev et al 2022: https:// arxiv.org/abs/2208.08423

-135°

-90

★GC

Messager 3: Photons Gamma-Ray Astronomy with HAWC

High Altitude Water Cherenkov Observatory

4100 m elevation

Energy range: ~300 GeV — 100 TeV Angular resolution: ~0.1° Field of View: ~2 sr >95% Uptime

10⁹: **G**iga

Main array completed March 2015 **Outriggers deployed 2018**

100,000 m²

$1,000 \text{ m}^2$

Gamma-ray photons

Air showers (e+e- cascade)

Cherenkov photons

Electrical signal

Cosmic Rays and Gamma Rays

Shower image, 100 GeV ½ray adapted from: F. Schmidt, J. Knapp, "CORSIKA Shower Images", 2005, https://www-zeuthen.desy.de/~jknapp/fs/showerimages.html

Cosmic accelerator

Time over threshold

Gamma-ray photons

Air showers (e+e- cascade)

Cherenkov light

Electrical signal

Dust, gas,

Cosmic

Dust, gas, photon fields

Cosmic accelerator

DAQ electronics

Dust, gas,

Cosmic

Dust, gas,

Cosmic

Event Reconstruction

Incident Direction (Time Gradient)

Core Location (Light level)

Gamma/Hadron Separation

Gamma-ray events

Cosmic-ray events

Axial symmetry

Asymmetric, high charge hits far from core

Dust, gas,

Cosmic

(High-level) analysis and modeling

modeling

Caveat

Myth: Emission > 100 TeV makes a PeVatron

- >10 known sources >100 TeV.
- Many show entirely leptonic emission (leptonic PeVatrons)
- Most UHE LHAASO sources have at least one bright young pulsar in the vicinity. (Correlation ≠ causation!) (<u>E. de Oña Wilhelmi et al 2022</u>)

HAASO J2226+608 atitude (deg) Galactic -6 -7 ⁻¹⁰10 100

240

LHAASO 2021: https://www.nature.com/articles/s41586-021-03498-z

Myth: Emission > 100 TeV makes a PeVatron

- >10 known sources >100 TeV.
- Many show entirely leptonic emission (leptonic PeVatrons)
- Most UHE LHAASO sources have at least one bright young pulsar in the vicinity. (Correlation ≠ causation!) (<u>E. de Oña Wilhelmi et al 2022</u>)
- Need in-depth MW spectral and spatial studies.
- Example: Crab pulsar wind nebula

10-' 10⁻⁸ 10⁻⁹ Flux (ergcm⁻²s⁻¹) **10**⁻¹⁰ **10**⁻¹¹ **10**⁻¹² **10**⁻¹³ **10**⁻¹⁴

Crab nebula energy spectrum and leptonic model

³³LHAASO 2021: <u>https://www.science.org/doi/10.1126/science.abg5137</u>

Gamma-ray Astronomy with Fermi-LAT Tracker e Calorimeter Anti-coincidence Detector 34

	LAT	HAWC
Size	(1.8m) ² * 1.5m	(150m) ²
Sensor	Si strips	Water + PM7
Direction reconstruction	Tracking	Timing
Energy range	30 MeV - 2 TeV	100 GeV - Pe
Angular resolution	~10° (100 MeV) ~0.05° (1 TeV)	~1° (1 TeV) ~0.1° (100 TeV

Image: <u>https://www-glast.stanford.edu/instrument.html</u>

Star-forming regions as PeVatrons?

Cygnus OB2 Association

- OB association in the Cygnus region.
- 1400 pc from Earth.
- Few 10⁶ years old.
- 50-100 O-type stars.
- ~50 binary systems.
- Large-scale (3°) GeV-TeV gamma-ray emission

Cygnus OB2 Association

- OB association in the Cygnus region.
- 1400 pc from Earth.
- Few 10⁶ years old.
- 50-100 O-type stars.
- ~50 binary systems.
- Large-scale (3°) GeV-TeV gamma-ray emission

HAWC (incl. HF) 2021: <u>https://</u> www.nature.com/articles/s41550-021-01318-y

>100 TeV Protons in Cygnus OB2 association

- Protons >100 TeV explain gamma-ray emission.
- X-ray/radio observations disfavor leptonic origin.
- Continuous acceleration or "recent" starburst activity.
- ~1% of the kinetic energy in stellar winds is converted to relativistic protons.

HAWC (incl. HF) 2021: <u>https://</u> www.nature.com/articles/s41550-021-01318-y

PeV Protons from Westerlund I?

- morphology.
- analysis but disfavored by morphology.

H.E.S.S. 2022: https://doi.org/10.1051/0004-6361/202244323

The case of SNR G106.3+2.7

22:28:00 RA (J2000)

Moon to scale

Red: Molecular Hydrogen

Also seen by MAGIC and LHAASO

Ge et al 2021: https://www.sciencedirect.com/science/article/pii/S2666675821000436

SNR G106.3+2.7 schematic

42

Phased analysis of GeV data

-4

Model 1: Electrons only

prl/abstract/10.1103/PhysRevLett.129.071101

K. Fang et al (incl HF) 2022: <u>https://journals.aps.org/</u> prl/abstract/10.1103/PhysRevLett.129.071101

Model 3: Protons and electrons

prl/abstract/10.1103/PhysRevLett.129.071101

Model 3: Protons and electrons

prl/abstract/10.1103/PhysRevLett.129.071101

What's Next?

News from G106.3+2.7

HAWC (incl HF) 2020: <u>https://iopscience.iop.org/</u> article/10.3847/2041-8213/ab96cc

HAWC (X. Wang): TeVPA 2022

MAGIC 2022: <u>https://arxiv.org/abs/2211.15321</u>

- PeV acceleration in G106.3+2.7 is unexpected.
- Newest results (MAGIC, HAWC) indicate two emission sites with energydependent morphology.
- Stay tuned for updated modeling!

Next Generation VHE Gamma-ray observatories

www.cta-observatory.org

Future instrumentation

Sensitivities: Luccheta et al 2022: <u>https://arxiv.org/abs/2204.01325</u>

- Gamma rays (and neutrinos) generic features of shock acceleration.
- Excellent GeV-TeV coverage by near-future instruments.
- Contamination from Galactic diffuse gamma-ray background and other sources.
- X-ray limited by source confusion and source size.
- MeV band (Bremsstrahlung) challenging.
- 16 Neutrino detection requires larger instrumented volume.

Conclusions

- PeVatrons are galactic proton accelerators capable of accelerating protons to PeV energies.
- PeVatrons are expected to emit >100 TeV gamma rays.
- 100 TeV gamma rays alone are not sufficient to claim PeVatron detection.
- Multi-wavelength data and physics modeling can help shed light on the emission mechanism and particle acceleration in gamma-ray sources.
- SNR G106.3+2.7 was identified as a galactic PeVatron through multi-wavelength data analysis.

