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Chapter 1

Precision tests of Bell’s inequalities

1.1 Overview

Bell’s inequalities test possibility of a replacement of quantum mechanics (QM) by classical
theories where the probabilistic nature of the QM is reproduced by statistical average over certain
hidden classical variables λ. This was inspired by the famous Einstein, Podolsky, Rosen (EPR)
paper [1] where they argued that either

1. the QM description of reality given by the wave function is not complete, or

2. when operators corresponding to two physical quantities that do not commute, the two
properties described by them cannot have simultaneous reality.

While the second does hold true in QM, EPR argued that if local realism was to be taken seriously,
independent measurements on entangled particles at space-like separations can indeed imply a
simultaneous reality of two non-commuting observables. The only way out of this paradox was to
treat even space-like separated particles (or the wavefunction thereof) as one entity, such that a
measurement of properties of one immediately affects that of the other, such that simultaneous
measurement of two noncommuting observables on either of the particles is no longer permitted.

John S. Bell in 1964 pointed out [2] that all attempts to construct local, realist model of
quantum phenomena must lead to statistical correlations that are distinctly different from those
predicted by quantum mechanics. Such (hidden variable)theories were shown by Bell to satisfy
inequalities constructed out of specific measurements, that QM necessarily will violate in certain
situations. Bell considered the gedankenexperiment of Bohm [3] where a pair of entangled spins
measured in different directions, each of which take discrete values ±1 (such as electron spin in
unites of ~/2) ∣∣∣〈(s1 · â)(s2 · b̂)

〉
−
〈

(s1 · â)(s2 · ĉ)
〉∣∣∣ ≤ ~2

2
+
〈

(s1 · b̂)(s2 · ĉ)
〉
. (1.1)

This inequality is violated by QM for certain directions and hence provides a pathway for
definitively testing validity of QM.

1.2 Clauser’s proposal

In practice, however, it is challenging to consider correlated spins. Instead a more reasonable
option is to consider correlated photon emissions. The first definitive step in this direction
was taken by Clauser, Horne, Shimony and Holt (CHSH) [4]. They considered the following
combination of correlations between the polarizations of entangled photons in four directions
â, â′, b̂, b̂′: 〈

S1(â)S2(b̂)
〉
−
〈
S1(â)S2(b̂′)

〉
+
〈
S1(â′)S2(b̂)

〉
+
〈
S1(â)S2(b̂′)

〉
. (1.2)

Here S1(â) corresponds to measurement of (linear) polarization of photon-1 in the direction â. If
the photon is found polarized in the direction (orthogonal to) â then S1(â) = +1(−1). Likewise
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Figure 2. The source S produces pairs of entangled photons, sent in opposite directions. Each 
photon encounters a two-channel polarizer whose orientation can be set by the Alice  and Bob . 
Emerging  signals  from  each  channel  are  detected  by  single  photon  detector  D+  and D- and 
coincidences counted   by the coincidence unit. The   correlation     𝐸𝐸(𝑎𝑎, 𝑏𝑏) =  (𝑁𝑁++-  𝑁𝑁+−  - 𝑁𝑁−+ + 
𝑁𝑁−−)/(𝑁𝑁+++ 𝑁𝑁+− + 𝑁𝑁−+ + 𝑁𝑁−−)   where 𝑁𝑁++, 𝑁𝑁+−, 𝑁𝑁−+,  and 𝑁𝑁−− are  the number of  coincidence 
events  recorded corresponding to the simultaneous detection at  Alice’s  and  Bob’s detectors D+ 
and D+ , D+ and D-, D- and D+ , and D- and D- ,  respectively. 
 
 
 
We can now compare this result with what is predicted by quantum theory. If the pair is in the 
state |𝜓𝜓−〉 given in Eq. (3), it is straightforward to show that 𝐸𝐸(𝐴𝐴1,𝐵𝐵1) = −𝒂𝒂1 ⋅ 𝒃𝒃1, and the same 
holds true for the other combinations. It is now possible to see that one can choose the vectors so 

that 𝒂𝒂1 ⋅ 𝒃𝒃1 = 𝒂𝒂1 ⋅ 𝒃𝒃2 = 𝒂𝒂2 ⋅ 𝒃𝒃1 =
1
√2
, and thus 〈𝑆𝑆〉 = 2√2, which is in clear violation of the CHSH 

version of the Bell inequality (5). 
 

The Freedman-Clauser experiment 
 
The story might have stopped here. Some people said, ‘Well, this is really weird’, but dismissed 
that  thought  because  the  status  quo  already  held  that  quantum  mechanics  is  strange, 
Schrödinger’s cat is bizarre, and so on. And despite the bizarreness, it all seemed to work, so the 
inclination of the research community at the time was to just carry on using quantum mechanics 
to study new and exciting phenomena. 
 
Indeed, initially very few people took notice of Bell’s work. However, those few who did, worried. 
Could  it  be  that  quantum  mechanics  does  not  always  work?  What  about  performing  an 
experiment that  tests quantum mechanics  in one of  those situations where  it contradicts  local 
realism? These were clearly the questions behind the CHSH work, and one of the authors, Clauser, 
set out to perform the experiment, together with the now-deceased Freedman. 
 
Clauser  had  a  background  in molecular  astrophysics  from his  Ph.D.  thesis, working with  Pat 
Thaddeus as his advisor at Columbia University in the City of New York. As a Ph.D. student, he 
had acquired an interest in the foundations of quantum mechanics. Thus, when he arrived at the 
University  of  California,  Berkeley  (UC  Berkeley),  to  work  as  a  postdoctoral  researcher  with 
Charles Townes in 1970, Clauser was prepared: he knew that Carl Kocher had built experimental 
equipment as part of his Ph.D. thesis at UC Berkeley in 1967 to study the time correlation between 
pairs of photons originating from a common source [10].  
 

Figure 1.1 Schematic of the setup proposed by Clauser et al. (involving measurement only in single
channel) and later on improved by Aspect et al.. Taken from [5].

for photon-2. The directions a, â (b, b̂) correspond to two different choices for polarizer at the
first (second) detector. See Fig. 1.1.

In a hidden variable theory, we assume the photons to carry their spin all-along with them
during the flight, which is determined at their production at the source. Assuming such a
production involves certain “hidden-variables” λ with a probability distribution ρ(λ), the value of
the correlation above will be given by∫

dλ ρ(λ)
[
S1(â, λ)S2(b̂, λ)− S1(â, λ)S2(b̂′, λ) + S1(â′, λ)S2(b̂, λ) + S1(â, λ)S2(b̂′, λ)

]
. (1.3)

Since each particle in this theory carries a definite value of polarizations in any given direction,
we find that for any given λ the magnitude of the quantity in the brackets is at most +2, such
that the absolute value of the correlation in Eq. (1.2) is constrained to be less than 2. This is
because demanding the first three terms to be +1 constrains the last term to be −1. Hence, we
have ∣∣∣〈S1(â)S2(b̂)

〉
−
〈
S1(â)S2(b̂′)

〉
+
〈
S1(â′)S2(b̂)

〉
+
〈
S1(â′)S2(b̂′)

〉∣∣∣
cl
≤ 2 . (1.4)

Let us now derive the expectation in QM. In their experiment, CHSH considered double
photon emission between energy levels 61S0 and 41S0 of Calcium ions, such that the probability
is given by square of the amplitude

〈γγ(41S0)|(61S0)〉 (1.5)

Both the states have j = 0, such that the two photon state must be a scalar function of the
polarizations. The two possibilities are k̂ · (e1 × e2) or e1 · e2, where k̂ is the direction of the
photon. The matrix element must be even in parity due to the even parity states, such that
e1 · e2 is the only allowed possibility. The probability will involve squaring this amplitude, such
that probability for photon 1 polarized in direction â and the other in direction b̂ is given by

P (++) ∝ (â · b̂)2 = cos2 θab (1.6)

The other possibilities with one of them minus correspond to photon polarized in a direction
orthogonal to â (and also orthogonal to direction of the photon k̂ itself), such that

P (−+) ∝ sin2 θab , (1.7)
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Demanding that the probability for the four cases add up to one fixes the coefficient to be 1/2.
Thus, the QM expectation is〈

S1(â)S2(b̂)
〉

QM
= P (++)− P (−+)− P (+−) + P (−−) = cos 2θab (1.8)

This can be plugged into the formula above in Eq. (1.4). One finds that this is maximum when
θab = θa′b = θa′b′ = 22.5 and the fourth θab′ = 67.5, in which case the expectation value is 2

√
2.

Note that at any given point we only have two directions, one from {â, â′} and the other from
{b̂, b̂′}.

1.3 Aspect’s group

Subsequent to Bell’s significant theoretical discovery, several experimental tests followed. Each
experimental test was required to satisfy the following requirements as best as possible:

1. Observations on the entangled particles must be made at space-like distances.

2. Observations must involve two non-commuting observables

3. The directions â, â′ be chosen independently of b̂, b̂′, such that any possible hidden
correlations between the two detectors are ruled out.

4. The directions â, etc. be randomly chosen while the particles are in flight, such that any
possible correlations between the directions and the original event leading to production of
entangled particles are ruled out.

5. Observations be made at high efficiency, so that violations of the inequalities due to incorrect
observations may be ruled out.

The first two points test the weirdest property of QM, “spooky action at a distance”. This must
necessarily involve non-commuting observables which in the words of EPR paper cannot have a
“simultaneous reality”. In the tests conducted by Clauser et al. the first two assumptions were
definitely incorporated. They, however, used single channel polarizers which meant that their
detectors could only detect the photons if they had certain polarization, whereas the opposite
polarization went undetected. This however, is not ideal as the non-appearance of the opposite
polarization can also result from simply having missed the photon. The third criteria was satisfied
to certain degree: their setup involved static polarizers that could not be rotated during the
flight of the particles. Thus, in demonstrating violation of the Bell’s inequality, they had to
make a crucial assumption that the rates of photons impinging on the detectors with any given
polarization are independent of the directions of the two polarizers. However, the static nature of
the experiment left the fourth point as a loop hole.

This was overcome to certain extent by later experiments by Aspect, Dalibard and Roger [6].
Their setup involved using ultrasonic standing waves in the water to enable fast switching between
two polarizer directions during the flight of the photons. The detectors were positioned 12m
apart such that L/c = 40 ns. Their setup, shown in Fig. 1.2, involved double channel polarizers,
and hence they were able to tell apart between ± polarizations of the impinging photons. The
acoustic switching was achieved at 10ns, and the lifetime of the intermediate cascade as 5 ns.
Hence their setup enabled randomly choosing direction of either detector while photons were
en-route. They found the Bell inequality violated by 5 standard deviations. However, it was
noted that the polarizers were switched in a quasiperiodic fashion, and the ideal scheme wasn’t
fully completed. One could argue that the sinusoidal switching using ultrasonic waves can be
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Figure 1.2 Schematic of setup by Aspect et al.. Taken from [6].

predictable into the future, and one instead requires a truly random switching of the directions
while the photons are in the flight. They proposed that “a more ideal experiment with random
and complete switching would be necessary for a fully conclusive argument against the whole
class of supplementary-parameter (hidden-parameter) theories obeying Einstein’s causality” [6].

1.4 Zeilinger’s group

1.4.1 Bell’s theorem with inequalities

The final milestone of random switching of detectors during photon-flight was achieved in a
remarkable experiment by Weihs, Jennewein, Simon, Weinfurter and Zeilinger [7] in 1998. Their
experiment was conducted using optical fibers stretched 400 meters apart across the Innsbruck
university science campus. This gave them 1.3µs to perform individual measurements. They
used a physical random number generator, a light-emitting diode, for fast switching of polarizer
directions. Their random number generator did not have a perfectly even distribution though
they argued that they normalized all the correlation functions to total number of events for a
certain combination of the analyzers’ settings. They managed to keep the distribution within 2%.
With their electronics under control they ensured that their analyzer setting wouldn’t have been
influenced by any event more than 100 ns earlier, clearly much shorter than 1.3 µs.

This set up succeeded in achieving completely the locality criterion of the gedankenexperiment.
One could argue if an unfair sampling of all the photon pairs that were created was responsible for
the violation of the ineqaulity. This was overcome in the Orsay experiments where two-channel
polarizers were used. Here the orthogonal polarization was deflected and detected as −. Lastly,
the efficiency of the detectors in the last experiment was about 5%. Their final results were
violation of the Bell’s inequality by 30 standard deviations.

1.4.2 Bell’s theorem without inequalities

Next we discuss another set-up where Bell’s theorem can be recast without inequalities and
without statistical terms. For two particle state, local realism can be only tested using statistical
predictions of the theory. We will now see that for three particles, we see a conflict even for
definite predictions. The statistics now is limited to the inevitable limitations of the experiments
that are also present in classical physics.
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VOLUME 81, NUMBER 23 P HY S I CA L REV I EW LE T T ER S 7 DECEMBER 1998

Alice Bob

Ti
m
e
[µ
s]

Source
Space [m]

X

Y

200-200

0

1

Z

FIG. 1. Spacetime diagram of our Bell experiment. Selecting
a random analyzer direction, setting the analyzer, and finally
detecting a photon constitute the measurement process. This
process on Alice’s side must fully lie inside the shaded region
which is invisible to Bob’s during his own measurement. For
our setup this means that the decision about the setting has
to be made after point “X” if the corresponding photons are
detected at spacetime points “Y” and “Z”, respectively. In our
experiment the measurement process (indicated by a short black
bar) including the choice of a random number took less than
only one-tenth of the maximum allowed time. The vertical
parts of the kinked photon world lines emerging from the
source represent the fiber coils at the source location, which
are obviously irrelevant to the locality argument.

In our experiment, for the first time, any mutual influ-
ence between the two observations is excluded within the
realm of Einstein locality. To achieve this condition the
observers “Alice” and “Bob” were spatially separated by
400 m across the Innsbruck University science campus,
which in turn means that the individual measurements as
defined above had to be shorter than 1.3 ms, the time for
direct communication at the speed of light. We used polar-
ization entangled photon pairs which were sent to the ob-
servers through optical fibers [11]. About 250 m of each
500 m long cable was laid out and the rest was left coiled
at the source (see Fig. 1). The difference in fiber length
was less than 1 m, which means that the photons were reg-
istered simultaneously within 5 ns. The duration of an in-
dividual measurement was kept far below the 1.3 ms limit
using high speed physical random number generators and
fast electro-optic modulators. Independent data registra-
tion was performed by each observer having his own time
interval analyzer and atomic clock, synchronized only once
before each experiment cycle.
Our source of photon pairs is degenerate type-II para-

metric down-conversion [5] where we pump a BBO crys-
tal with 400 mW of 351 nm light from an argon-ion laser.

A telescope was used to narrow the UV-pump beam [12],
in order to enhance the coupling of the 702 nm photons
into the two single-mode glass fibers. On the way to the
fibers, the photons passed a half-wave plate and the com-
pensator crystals necessary to compensate for in-crystal
birefringence and to adjust the internal phase w of the
entangled state jCl ≠ 1y

p
2 sjHl1jV l2 1 eiwjV l1jHl2d,

which we chose w ≠ p .
The single-mode optical fibers had been selected for a

cutoff wavelength close to 700 nm to minimize coupling
losses. Manual fiber polarization controllers were inserted
at the source location into both arms to be able to
compensate for any unitary polarization transformation in
the fiber cable. Depolarization within the fibers was found
to be less than 1% and polarization proved to be stable
(rotation less than 1±) within 1 hour.
Each of the observers (see Fig. 2) switched the di-

rection of local polarization analysis with a transverse
electro-optic modulator. Its optic axis was set at 45±

with respect to the subsequent polarizer. Applying a volt-
age causes a rotation of the polarization of light passing
through the modulator by an angle proportional to the
voltage [13]. For the measurements the modulators were
switched fast between a rotation of 0± and 45±.
The modulation systems (high-voltage amplifier and

electro-optic modulator) had a frequency range from dc
to 30 MHz. Operating the systems at high frequencies
we observed a reduced polarization contrast of 97% (Bob)
and 98% (Alice). This, however, is no real depolarization
but merely reflects the fact that we are averaging over
the polarization rotation induced by an electrical signal
from the high-voltage amplifier, which is not of perfectly
rectangular shape.
The actual orientation for local polarization analysis was

determined independently by a physical random number

FIG. 2. One of the two observer stations. A random num-
ber generator is driving the electro-optic modulator. Silicon
avalanche photodiodes are used as detectors. A “time tag” is
stored for each detected photon together with the corresponding
random number “0” or “1” and the code for the detector “1”
or “2” corresponding to the two outputs of the polarizer.

5040

Figure 1.3 Setup of experiment by Zeilinger’s group. Here the black vertical bar in the light-cone shows
the amount of time they needed to implement random switching of the polarizer direction, which was
about one tenth of the total flight time of the entangled photons. Taken from [7].

Let us first consider three spin-1/2 particles a, b, c and a set of observables,

O1 = σaxσ
b
yσ

c
y , O2 = σayσ

b
xσ

c
y , O3 = σayσ

b
yσ

c
x . (1.9)

It can be checked that the three observables commute and hence we can decompose any arbitrary
state as simultaneous eignevectors of these observables. When applied on the state

|ψ〉 =
|+ ++〉 − | − −−〉√

2
, (1.10)

using

σx|±〉 = |∓〉 , iσy|±〉 = ∓|∓〉 , (1.11)

we find

σaxσ
c
yσ

c
y|ψ〉 = |ψ〉 , (1.12)

and likewise +1 eigenvalue for the other two observables. Thus we have

O1,2,3|ψ〉 = |ψ〉 , (1.13)

If we instead consider the state

|φ〉 =
|+ ++〉+ | − −−〉√

2
, (1.14)

we find

O1,2,3|φ〉 = −|φ〉 . (1.15)
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FIG. 1. Schematic drawing of the experimental setup for the
demomstration of the Greenberger-Horne-Zeilinger entangle-
ment for spatially separated photons. Conditioned on the regis-
tration of one photon at the trigger detector T, the three
photons registered at D1, D2, and D3 exhibit the desired GHZ
correlations.

generated by a short pulse of ultraviolet (UV) light
(¯200 fs, l ≠ 394 nm from a frequency-doubled, mode-
locked Ti-sapphire laser), which passes through a nonlin-
ear crystal (here, b-barium-borate, BBO). The probability
per pulse to create a single pair in the desired modes, se-
lected by irises, about 1.5 mm wide and 25 cm behind the
crystal, is low and of the order of a few 1024. The pair
creation is such that the following polarization entangled
state is obtained [3]:

1p
2

sjHlajV lb 2 jV lajHlbd . (1)

This state indicates a superposition of the possibility that
the photon in arm a is horizontally polarized and the
one in arm b is vertically polarized sjHlajV lbd, and the
opposite possibility sjV lajHlbd. The minus sign indicates
that there is a fixed phase difference of p between the two
possibilities. For our GHZ experiment this phase factor is
actually allowed to have any value, as long as it is fixed
for all pair creations.
The setup is such that arm a continues towards a

polarizing beam splitter, where V photons are reflected
and H photons are transmitted towards detector T (behind
an interference filter dl ≠ 4.6 nm at 788 nm). Arm b

continues towards a 50y50 polarization-independent beam
splitter. From each beam splitter, one output is directed
to a final polarizing beam splitter. In between the two
polarizing beam splitters, vertical polarization is rotated to
45± polarization using a ly2 plate. The remaining three
output arms continue through interference filters sdl ≠
3.6 nmd and single-mode fibers towards the single-photon
detectors D1, D2, and D3. Including filter losses, coupling

into single-mode fibers, and the Si-avalanche detector
efficiency, the total collection and detection probability of
a photon is about 10%.
Consider now the case that two pairs are generated by a

single UV pulse, and that the four photons are all detected,
one by each detector T, D1, D2, and D3. Our claim is
that, by the coincident detection of the four photons and
because of the brief duration of the UV pulse and the
narrowness of the filters, one can conclude that a three-
photon GHZ state has been recorded by detectors D1, D2,
and D3. The reasoning is as follows. When a fourfold
coincidence recording is obtained, one photon in path a

must have been horizontally polarized and detected by the
trigger detector T. Its companion photon in path b must
then be vertically polarized, and it has a 50% chance to
be transmitted by the beam splitter (see Fig. 1) towards
detector D3 and a 50% chance to be reflected by the beam
splitter towards the final polarizing beam splitter, where
it will be reflected to D2. Consider the first possibility,
i.e., the companion of the photon detected at T is detected
by D3 and necessarily carried polarization V . Then the
counts at detectors D1 and D2 were due to a second pair,
one photon traveling via path a and the other one via path
b. The photon traveling via path a must necessarily be V

polarized in order to be reflected by the polarizing beam
splitter in path a; thus its companion, taking path b, must
be H polarized and, after reflection at the beam spliter in
path b, it will be transmitted by the final polarizing beam
splitter and arrive at detector D1. The photon detected by
D2 therefore must be H polarized since it came via path a

and had to transit the last polarizing beam splitter. Note
that this latter photon was V polarized but after passing
the ly2 plate it became polarized at 45± which gave it a
50% chance to arrive as an H polarized photon at detector
D2. Thus we conclude that, if the photon detected by
D3 is the companion of the T photon, the coincidence
detection by D1, D2, and D3 then corresponds to the
detection of the state

jHl1jHl2jV l3 . (2)

By a similar argument one can show that, if the photon
detected by D2 is the companion of the T photon, the
coincidence detection by D1, D2, and D3 corresponds to
the detection of the state

jV l1jV l2jHl3 . (3)

In general, the two possible states (2) and (3), cor-
responding to a fourfold coincidence recording, will not
form a coherent superposition, i.e., a GHZ state, because
they could, in principle, be distinguishable. Besides the
possible lack of mode overlap at the detectors, the ex-
act detection time of each photon can reveal which state
is present. For example, state (2) is identified by not-
ing that T and D3, or D1 and D2, fire nearly simultane-
ously. To erase this information it is necessary that the
coherence time of the photons is substantially longer than

1346

Figure 1.4 Setup to produce Greenberger-Horne-Zeilinger entangled state. Taken from [9].

The state |φ〉 is termed as the Greenberger-Horne-Zeilinger state [8]. To understand the significance
of these eigenstates, consider applying the operator

Ox ≡ σaxσbxσcx = −O1O2O3 . (1.16)

This must result -1 when applied on |ψ〉 (or +1 for |φ〉). However, it turns out that if these
three particles in this state were detected at space-like separations by three observers as in
the experiments described above, with each observer making a random choice between x and
y directions, the last result will be in contradiction with local realism where each of the three
particles carry information about x and y spin components from the point they are created.
In other words, local realism implies that measurement of Ox must result in +1 if the three
measurements O1,2,3 also result in +1, in direct contradiction with QM!

To see how this works, let us consider the case when Oi|ψ〉 = +|ψ〉. In a hidden-variable
theory, the three measurements using Oi will result in +1 outcome only for certain specific
combinations. We can check explicitly the outcome of measuring Ox for all these configurations,
the product of the spins in x directions must be positive, unlike the quantum mechanical result
above. Suppose we consider first operating with O1 that results in +1 times the state. Thus, the
particles can be assumed to carry spins, for example

|ψ〉cl =

(
+
)(
−

)(
−

)
(1.17)

Here the first row represents outcome of the x-component spin and the second y. The three
matrices represent three particles (not to be confused with the column vector labeling Sz
components!). The empty slots are not constrained by O1 measurement. We can now consider
application of O2 and again demand a +1 eigenvalue. Note that O1 has already fixed the σcy
eigenvalue. This is because once the particles are created, in the local realism explanation, they
must carry these values to the detector where any of the two directions can be measured. Thus,
for example, a viable configuration is

|ψ〉cl =

(
+
−

)(
+
−

)(
−

)
(1.18)
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Finally, application of O3 on this state must now fully constrain all the entries. Since both σa,by
are −1, the σcx ought to be +1, such that

|ψ〉cl =

(
+
−

)(
+
−

)(
+
−

)
(1.19)

However, now the application of σaxσbxσcx results in positive eigenvalue. It can be checked that
the remaining cases also result in a plus sign, in direct contraction with quantum mechanics.

This state was prepared by Zeilinger’s group in 1999 [9] and used for testing Bell’s theorem
in 2000 [10]. In their setup, shown in Fig. 1.4, they employed a β-barium Borate source which
almost always emits a pair of entangled photons, each pair with zero total angular momentum.
These photons are directed towards a setup consisting of polarizing and normal beam splitters
and four detectors T , D1, D2 and D3. In the event when all the four detectors detect photons,
with the one in T being always horizontally polarized, the three photons in measured in D1,2,3

correspond to a measurement on the GHZ state. This can be seen through a series of checks.
For definiteness, let us stick to the terminology of [9] and refer to + as horizontal polarization
(H), and − as the vertical (V ). Now, let us consider the event where all the four detectors are
triggered:

1. The detector T must have H-polarized photon, so let’s call it H1, and it’s companion V1

2. The companion V1 must go through arm b. It can either be reflected at the BS or transmitted.
Let us say it was simply transmitted, then it will be detected at detector D3.

3. Now let us consider the other pair. Since we have found a photon in the trigger T , one of
the photons from the other pair traveling along the arm a must have had polarization V so
as to be reflected by the PBS. Let’s call it V2, but leave this here for a moment.

4. The other photon from the second pair thus carries horizontal polarization, and let’s call it
H2. From point 2 above, we’ve already assigned D3 to V1, so H2 must be reflected at BS.
Eventually it will encounter the PBS on top, and having horizontal polarization, it will be
transmitted and registered at D1.

5. Let us now return to the V2. If upon passing through λ/2 plate its polarization does not
rotate, it will be detected at D1, which we have already assigned to H2. Thus, the only
possibility that remains is that it does get rotated V2 → H ′2, and goes right through PBS
into D2.

Hence, the outcome of this is

|T 〉 ⊗ |D1D2D3〉 = |H1〉 ⊗ |H2H
′
2V1〉 → |H〉 ⊗ |HHV 〉 , (1.20)

Similarly, the other outcome when photon V1 gets reflected at BS, is given by

|T 〉 ⊗ |D1D2D3〉 = |H1〉 ⊗ |V2V1H2〉 → |H〉 ⊗ |V V H〉 . (1.21)

In the second outcome we see that the photon that was initially V2 does not get rotated into
horizontal polarization. Thus we see that the two outcomes occuring with equal probability lead
to the state

|GHZ〉 =
1√
2

(
|HHV 〉+ |V V H〉

)
. (1.22)

This may not look quite like |φ〉 in Eq. (1.14), but it’s just a matter of redefining the relative
orientation of the third detector D3 so as to call V = + and H = −. Using this state, Zeilinger’s
group confirmed the validity of QM to 8 standard deviations [10].



Chapter 2

Notes on QFT in curved spacetime

2.1 Overview

A spacetime is considered to contain a black hole if the entire spacetime is not contained in
the causal past of future null infinity. In other words, there exists a region in such a spacetime
from which even light cannot escape. The simplest example of a black hole is the spherically
symmetric Schwartzschild vacuum solution to the Einstein’s equation. Here, despite there being
any matter around, the spacetime exhibits a singularity (at r = 0) and an event horizon (at
r = rs = 2GM). Schwartzschild black hole is essentially an eternal black hole, a classical solution
that is stationary. An eternal black hole left alone will stay the same for eternity. However,
interesting phenomena arise when one attempts to be a bit more realistic and tries to include
matter fields interacting quantum mechanically in such a spacetime. Hawking realized in 1976
that in such a quantum mechanical setting black holes must emit thermal radiation, and will
eventually evaporate away! This astounding observation has led to a flurry of research, especially
to explain an apparent paradox that results from such a behavior — is the evaporation of
black holes due to Hawking radiation in contradiction with the laws of quantum mechanics that
necessitate unitary (information-preserving) evolution of pure states?

In these notes we review the framework of QFT in curved spacetime which will help us
understand the Hawking effect. The central idea is that notion of particles becomes ill-defined in
curved spacetimes. As we will review below, in the flat spacetime, Poincaré symmetry allows
us to formulate QFT from the perspective of global inertial observers, and a notion of particle
can be defined that all such observers agree upon. However, in curved spacetime, these ideas do
not generalize and as a result two observers need not agree on what they call, for example, a
“zero-particle” vacuum state. One must then carefully (re-)formulate QFT in a basis independent
fashion that is not tied to specifics of Minkowski space. It might appear a daunting task to
consider QFT in curved spacetime since already in flat spacetimes field theories, such as a non-
abelian gauge theory, are challenging enough. Fortunately, they key physics behind the Hawking
effect has little to do with non-linearity of the quantum field and this effect can be analyzed
by considering linear (free) scalar fields with the classical solutions obeying the Klein-Gordon
equation. These notes are based on books by Wald [11] and Carroll [12].

2.2 The Klein-Gordon Field

Our goal is to reformulate the QFT for linear scalar field in a coordinate invariant way. We begin
with recalling the classical action for Klein-Gordon field in Minkowski spacetime:

S = −1

2

∫
d4x

(
∂aφ∂

aφ+m2φ2
)

(2.1)

where we follow the (−,+,+,+) prescription for the metric signature. The classical equations of
motion are (

�−m2
)
φ = 0 . (2.2)

8
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For flatspace time we can introduce a global inertial coordinate system. Different inertial coordi-
nate systems will be related to each other via spacetime translations and Lorentz transformations.
In this inertial system, we can write the action as

S =

∫
dt L , L =

1

2

∫
d3x

(
φ̇2 −

(
~∇φ
)2 −m2φ2

)
. (2.3)

For convenience, we will replace R3 by a three-torus T 3 with side length L and impose periodic
boundary condition on the scalar field. This allows us to decompose the space-integral above in
Fourier modes

φ
(
t,x
)

= L−3/2
∑
k

φk(t)eik·x , k =
2π

L
(n1, n2, n3) , (2.4)

with the inverse Fourier transform given by

φk(t) = L−3/2

∫
d3x φ(t,x)e−ik·x , (2.5)

and express the Lagrangian in terms of these modes

L =
∑
k

1

2
|φ̇k|2 −

1

2
ω2
k|φk|2 , (2.6)

where

ωk ≡ k2 +m2 . (2.7)

Thus, the linear scalar field is equivalent to collection of (countably) infinitely many decoupled
harmonic oscillators characterized by frequencies ωk. We must then figure out how to deal with
the case of infinite oscillators.

2.3 Classical phase-space and the symplectic structure

Before we consider the quantum theory, let us look closely at the mathematical structure of
the classical solutions. Consider an n-dimensional classical system specified by positions {qi}
and momenta {pi}. The classical dynamics is governed by the Hamiltonian via the Hamilton’s
equations of motion

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

, (2.8)

The positions and momenta comprise a 2n-dimensional ManifoldM. It will be convenient to
express the 2n coordinates {qi, pi} as y = (q1, . . . qn; p1, . . . pn), such that Eq. (2.8) becomes

dyµ

dt
=

2n∑
ν=1

Ωµν ∂H

∂yν
, Ωµν =

[
0 1n×n

−1n×n 0

]
µν

. (2.9)

For the reasons mentioned above, we will consider free, linear theories. Hence, we limit
our discussion to Hamiltonians that is a quadratic function on yµ which will lead to linear
evolution equations of the coordinates yµ. Each point in the phase-spaceM can be thought of
as representing initial data for the Hamilton’s equations in Eq. (2.8) and gives rise to a unique
solution. One can then identifyM with the manifold of solution space S which contains elements
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yi(t) (here the i index labels the solution with yµi (t) being the components). Limiting to quadratic
Hamiltonians gives rise to linear evolution equations of the positions and momenta, such the
solution space acquires a natural vector space structure – linear combinations of solutions to
Hamilton’s equations are also solutions. However, this is also true of any general, coupled linear
first order differential equations. The special property of Hamilton’s equations is that they allow
us to define a symplectic product of two solutions y1(t) and y2(t) that is conserved over the course
of evolution:

s(t) ≡ Ω(y1(t), y2(t)) =
∑
αβ

Ωαβy
α
1 y

β
2 , (2.10)

where Ωαβ is the inverse of Ωµν in Eq. (2.8). It is a straighforward exercise to check using Eq. (2.9)
that for a quadratic Hamiltonian,

H(t; y) ≡ 1

2

∑
µ,ν

Kµν(t)yµyν , (2.11)

the symplectic product of solutions y1,2(t) in Eq. (2.10) is time-independent. In proving this one
makes use of the antisymmetric property of Ωαβ. Thus the vector space of solutions S is now
endowed with a symplectic structure Ω : S × S → R that is conserved and is independent of
the initial time t = 0. This is the basic mathematical structure required for construction of the
quantum theory.

Next, observables are maps f : M → R that are functions of positions and momenta
f
(
{qi}, {pi}

)
. Specifically we will be interested in linear observables, where f ’s are linear

combinations of qi and pi:

f
(
({qi}, {pi})

)
=
∑
i

αiqi + βipi . (2.12)

Note that the coordinates qi and pi are themselves observables. Limiting to linear observables is
big simplification since later on in generalizing to QFT, these observables will become distributions
and there are technical challenges involved with dealing with products of distributions. Then, all
the linear observables can be expressed in terms of the fundamental observables Ω(y, ·), where
the empty slot is a place-holder for the argument of the observable f . (We have dropped the t
argument of y as its product with another solution is conserved). To see this, we can go back to
the basis {qi, pi} and write Eq. (2.10) as

Ω(y1, y2) =
∑
µ

(
p1µq2µ − p2µq1µ

)
, (2.13)

such that the function f in Eq. (2.12) is given by

f(y) = Ω
(
(−β1,−β2, . . . ,−βn;α1, . . . αn) , y

)
(2.14)

The Poisson brackets of positions and momenta qi and pi,

{qi, qj} = {pi, pj} = 0 , {qi, pj} = δij , (2.15)

now in terms of Ω(y, ·) become{
Ω(y1, ·),Ω(y2, ·)

}
= −Ω(y1, y2) . (2.16)

The advantage of expressing the position and momentum observables in terms of Ω(y, ·) is that
the above equation holds independently of the choice of the coordinates on the phase spaceM.
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2.4 Quantum theory of infinite oscillators

To construct the quantum theory we will first have to choose a Hilbert space F of states and
hermitian operators f̂i : F → F that correspond to classical observables fi. The Poisson bracket
relations in the classical theory now become commutation relations on quantum operators. The
canonical commutation relations are now given by[

Ω̂(y1, ·), Ω̂(y2, ·)
]

= −iΩ(y1, y2) , (2.17)

where the right hand side Ω(y1, y2) is a number and Ω̂(yi, ·) are hermitian operators corresponding
to the classical observables Ω(yi, ·).

Let us recall that Hamiltonian for a 1 dimensional simple harmonic oscillator oscillating with
frequency ωi is given by

H =
1

2
p2
i +

1

2
ω2
i q

2
i . (2.18)

We can directly start with canonical commutation relations in terms of q̂ and p̂ operators and
rewrite the above result as the Hamiltonian operator in the quantum theory. To proceed further
we then introduce the non-hermitian annihilation operator

ai =

√
ωi
2
qi + i

√
1

2ω
pi , (2.19)

with the spectrum given by

|n〉 =
1√
n!

(
a†i
)n|0〉 , (2.20)

where the nth state satisfies H|n〉 = (n+ 1/2)ωi. Thus, in order to construct the Hilbert space F
of the scalar field, we might simply consider taking tensor product of Hilbert spaces for each of
the oscillator mode. For example, for n decoupled oscillators the Hilbert space of the combined
system can be taken to be

F = F1 ⊗ . . .⊗Fn . (2.21)

where Fi is the Hilbert space of a single oscillator with frequency ωi. While this is okay for
finite number of oscillators, it turns out that the product above does not generalize suitably
to the case of infinite number of oscillators. Such a generalization turns out to yield a Hilbert
space that is too large. Similar to how a collection of an infinite string of binary digits 0 and 1
is uncountable, a Hilbert space that includes all states of countably infinite oscillators has an
uncountable dimension. We would rather start differently and consider a minimalist approach of
finding a Hilbert space that yields sensible results for observables that we are interested in. See
the introductory discussion in Ref. [13] for more details.

Thus, we will consider an alternative construction that yields a Hilbert space that coincides
with Eq. (2.21) for finitely many oscillators, but can be straightforwardly generalized to the
infinite case. The only technical difference between this construction we are about to describe and
the one above is that the Hamiltonians differ in the two cases by an additive constant. Essentially,
the construction below will result in a Hamiltonian which sets the vacuum energy to zero, as
opposed to 1

2ωi for the one above. This additive constant, though infinite in the case of infinitely
many oscillators, is not a cause for concern.

The starting point of the alternative construction is to consider all the frequencies {ωi} at
once via the solution space S, instead of first considering all the resonances ωi, 2ωi, . . . of a given
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oscillator and then the tensor product as in Eq. (2.21). In the language of describing the classical
system above, we consider 2n-dimensional phase-space of positions and momenta (which are
equivalent to the scalar field value and its derivative). Note that in the classical theory the
solutions y ∈ S are real. For example, for initial conditions (q, p) = (0, a) at t = 0, the classical
solution is given by,

q(t) =
a

ω
sin(ωt) , p(t) = q̇(t) = a cos(ωt) . (2.22)

The first step towards constructing the Hilbert space is to complexify the solution space S to SC.
Thus, we will also allow for complex solutions in SC, e.g. y(t) = ae±iωt. On this 2n-dimensional
complex vector space, we define the map (, ) : SC × SC → C(

y1, y2

)
≡ −iΩ

(
ȳ1, y2

)
. (2.23)

where ȳ1 is the complex conjugate of the solution y1. Recall that a Hilbert space is a vector
space which is complete in the norm associated to an inner product. A property of inner product
is that it be positive definite, i.e. 〈ψ,ψ〉 ≥ 0. The map above in Eq. (2.23) however fails to be
positive definite for “negative frequency solutions”. For example, for y−(t) = (ae+iωt, iωae+iωt)
for ω > 0, using Eq. (2.13) we have

(y−, y−) = −i
((
− iωae−iωt

)
ae+iωt −

(
+ iωae+iωt

)(
ae−iωt

))
= −2ωa2 . (2.24)

On the other hand positive frequency solutions y+ = (ae−iωt,−iωae−iωt) have positive norm, and
are orthogonal to negative frequency solutions:

(y+, y+) = +2ωa2 , (y+, y−) = 0 . (2.25)

Thus, we can restrict our attention to positive frequency solutions and use Eq. (2.23) to define
an inner product. Then we can consider Hilbert space completion of in the associated norm to
obtain a complex Hilbert space H. Thus H only consists of positive frequency solutions of SC.
Then the Hilbert space that we’ve been seeking for the complete set of decoupled oscillators is
the symmetric Fock space associated with H:

Fs(H) =

∞⊕
n=0

( n⊗
s
H
)

(2.26)

We represent elements of H as ξa which are normalized to 1. These elements are simply the
solutions

ξi(t) =
1√
2ωi

e−iωit . (2.27)

The elements of the symmetric Fock space are then written as

Ψ =
(
ψ,ψa1 , ψa1a2 , . . . , ψa1...an , . . .

)
, ψa1...an = ψ(a1...an) . (2.28)

We are considering symmetrized products since we are dealing with bosons. For n = 0, we simply
have complex numbers such that ψ ∈ C in the above equation. The solutions with n > 1 can be
interpreted as “multi-particle” state. Now, recall that elements of H are simply positive frequency
solutions in SC. For each ξa ∈ H we have a corresponding negative frequency solution ξ̄a. In
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this index notation in which the inner products are written as (ξ, η) = ξ̄aη
a. We can equivalently

define the norm on the negative frequency solutions to be opposite of Eq. (2.23), which defines
the conjugate Hilbert space H.

Now, we define the annihilation operator a(ξ̄a) : Fs(H)→ Fs(H) associated with ξ̄ as

a(ξ̄)Ψ =
(
ξ̄aψ

a,
√

2ξ̄aψ
aa1 ,
√

3ξ̄aψ
(aa1a2), . . .

)
. (2.29)

Likewise, the creation operator associated with ξa ∈ H, a†(ξa) : Fs(H)→ Fs(H) is defined via

a†(ξ)Ψ =
(
0, ψξa1 ,

√
2ξ(a1ψa2),

√
3ξ(a1ψa2a3), . . .

)
. (2.30)

Notice that the annihilation operator removes the entry ψ for n = 0 in Ψ, where as the creation
operator does not have the n = 0 entry in its range – as we would have expected. It is a fun
exercise to verify that [

a(ξ̄), a†(η)
]

= (ξ, η)I . (2.31)

Where the right hand side is the number (ξ, η) times the identity operator. This can be proved
using the relation

ξ̄aη
(aψa1...an) =

1

n

[
ξ̄aη

aψ(a1...an) + (n− 1)η(a1 ξ̄aψ
(aa2...an))

]
. (2.32)

Having defined the creation and annihilation operators associated with elements of H, the
Heisenberg picture position and momentum operators on Fs(H) are given by

qiH(t) = ξi(t)ai + ξ̄i(t)a
†
i (2.33)

piH(t) =
d
dt
qiH(t) . (2.34)

where ai = a(ξ̄i) associated with the oscillator with frequency ωi. Note that qiH(t) and piH(t)

inherit their time dependence from the pre-factors ξi(t) whereas the operators ai, a
†
i are associated

with the solution ξi which exists for all times, and hence are time-independent. It is straightforward
to check using Eq. (2.32) that these operators satisfy canonical commutation relations of position
and momentum operators.

We can also express the fundamental linear observables Ω̂(y, ·) acting on states in Fs(H) in
terms of creation and annihilation operator. For each y ∈ S the Schrödigner picture operator
representing the classical observable Ω(y, ·) is given by

Ω̂(y, ·) = ia
(
y−
)
− ia†(y+) , (2.35)

where y± are the positive and negative frequency parts of the solution y(t) at t = 0. We can
verify this by noting that from Eqs. (2.12) and (2.14), qiH(t) in Eq. (2.33) is the observable
corresponding to setting pth

i component of y(t) equal to one at t = 0. So we begin with a solution
ψ(t) such that ψ̇(t = 0) = 1. Hence, ψ = 1/ωi sinωit. Thus, the positive and negative frequency
parts are given by

ψ+(t) =
i

2ωi
e−iωit , ψ−(t) = − i

2ωi
e+iωi . (2.36)

Because a(ξ̄i) and a†(ξi) are linear in ξ̄a and ξa, we simply have

a(ψ−(t = 0)) = − i√
2ωi

ai , a†(ψ+(t = 0)) =
i√
2ωi

a†i , (2.37)
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such that

Ω̂
(
ψ, ·
)

=
1√
2ωi

ai +
1√
2ωi

a†i

= qiH(t = 0) . (2.38)

Accordingly, the Heisenberg picture operators are given by

Ω̂H(y, ·) = ia
(
yt−
)
− ia†(yt+) . (2.39)

Here the time dependence arises from the solution yt whose initial data at t = 0 is y(−t).
We close this section by using the above Hilbert space construction for infinite, decoupled

oscillators to write down the quantum theory of the scalar field. We first note that because we
are considering a real scalar field the modes for k and −k are related as

φ̄k = φ−k , (2.40)

and secondly that in Eq. (2.6) we have two independent sets of oscillators corresponding to
“positions”

√
2<(φk) and

√
2Im(φk). The factor of

√
2 arises since the sum runs over both k

and −k. Both sets of oscillators have solutions that can be written in terms of annihilation and
creation operators defined above. It is convenient to work with the combination

ak =
1√
2

(
bk + ick

)
, (2.41)

where bk are annihilation operators associated with
√

2<(φk) oscillators and ck for
√

2Im(φk).
These two sets of oscillators are precisely what we saw above and we have simply relabeled the
frequencies ωi → ωk. Then it follows that the scalar field φ̂(t,x) has the formal solution:

φ̂(t;x) =
∑
k

(
ψk(t,x)ak + ψ̄i(t,x)a†k

)
, (2.42)

where in analogy to Eq. (2.27), ψk and ψ̄k are the normalized positive and negative frequency
plane wave solutions to the Klein-Gordon equation:

ψk ≡
1

L3/2
√

2ωk
e+ik·x−iωkt . (2.43)

The new distinction from Eq. (2.27) is that they carry an additional x dependence.
Similarly, our fundamental observables on the Klein-Gordon field are given by

Ω̂
(
ψ, ·
)

= ia(ψ−)− ia†(ψ+) , (2.44)

Ω̂H

(
ψ, ·
)

= ia(ψt−)− ia†(ψt+) .

Here ψ is a generic solution to the Klein-Gordon equation.
We can now ask how the above mode decomposition looks like for another observer within the

family of global inertial observers. The two observers relate their coordinate systems via Lorentz
transformations. Suppose the coordinates of two observers are related as x′µ = Λµ

νxν and the
unprimed observer is interested in performing measurement Ω̂(ψ, ·) using a solution ψ of the
Klein-Gordon equation. We can decompose the solution into positive and negative frequencies
plane wave basis:

ψ(x) =
∑
k

(
αkψk(x) + βkψ̄k

)
, (2.45)
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such that

Ω̂(ψ, ·) =
∑
k

(
αkΩ̂(ψk, ·) + βkΩ̂(ψ̄k, ·)

)
(2.46)

= Ω̂
(
ψ′, ·

)
. (2.47)

Here ψ′ is the solution observed by the primed observer:

ψ′(x′) =
∑
k

(
αΛ−1kψk(x′) + bΛ−1kψ̄k(x′)

)
. (2.48)

In particular, if the unprimed observer finds a one-particle state with momentum k such that
only αk = 1 and the rest vanishing, then the primed observer will observe a one-particle state
with momentum Λk and frequency γωk. This is of course expected, but we would like to stress
that both the observers agree on the notion of particles, and only the momenta and frequencies
shift. Accordingly, both will agree on what constitutes a vacuum state. This feature, however,
is only specific to global inertial observers in flat spacetime, and as we will see in the following
sections, it does not hold for curved spacetimes.

Finally, we make some remarks concerning subtleties associated with the above generalization
to the infinite oscillators case. Unlike the case of a finite number of harmonic oscillators, the
complexification of the space of real solutions to Klein-Gordon equation and its decomposition
into positive and negative frequency solutions is not straightforward procedure as the space of
positive frequency solutions cannot be simply identified after complexifying S to SC. Furthermore,
the solution written above in Eq. (2.42) in the plane-wave basis does not converge. One can
nevertheless view it as a formal solution, and make sense of it by “smearing” it with test functions
f : R4 → R with compact support. This procedure of smearing allows us to make sense of the linear
observables Ω̂(ψ, ·). However, this problem becomes particularly severe for non-linear functions.
Note that in the alternative construction we did not bother writing down the expression of the
Hamiltonian. The Hamiltonian, or more generally the energy momentum tensor T ab associated
with the Klein-Gordon field is a quadratic function of field operators. Products of distributions
are not mathematically well-defined and must be treated with great care. The calculation of
expectation value of energy momentum tensor is relevant for “back-reaction” effects which enters
the Einstein’s equation in the semi-classical picture. We do not review these subtleties here and
refer to Ref. [11] for more details.

2.5 Unitary equivalence

The Klein-Gordon equation can be suitably generalized to the case of curved spacetime by using
the invariant volume element

√
−gd4x in Eq. (2.1) and possibly including linear couplings of the

scalar field with Ricci curvature R. We will restrict to spacetimes where the classical dynamics of
the curved spacetime Klein-Gordon equation (with covariant d’Alembertian) is unique to initial
values of the field on a Cauchy hypersurface Σ. Given presence of such a hypersurface, the value of
field at any location in the spacetime can be back-tracked or forward-tracked to its value on Σ at
t = 0. The key subtlety, however, is that there is no unique or preferred choice of decomposition
of these classical solutions into positive and negative frequencies. Such a choice is in fact closely
tied to the choice one makes for defining the inner product in Eq. (2.23) on the space of classical
solutions (suitably complexified). For finite dimensional case, it can be shown that different
choices of inner products leads to unitary equivalent Hilbert spaces (discussed below). This
however no longer continues to be true for infinite dimensional case. For the Minkowski case
we considered in the previous section we were guided by a preferred choice of the inner product
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by taking a spacelike Cauchy surface of flat Euclidean space at t = 0 and decomposing in the
plane-wave basis. Hence, it is natural to ask how QFT formulations in two different bases are
related. We will restrict ourselves to choice of bases that lead to unitary equivalent descriptions
(defined below). This is also relevant for defining the S-matrix where one is interested in relating
descriptions via Fock spaces Fs(Hin) and Fs(Hout) suitable for describing incoming and outgoing
states. The S-matrix in this case only well-defined if these two descriptions are unitary equivalent.

For now, we will keep the notation abstract and demonstrate the working of the machinery
via an explicit example of Unruh effect in the following section. For concreteness, consider two
unitary equivalent decompositions H1 and H2 of the complexified solution space SC of the curved
space Klein-Gordon equation1. We then consider the resulting Fock spaces F1 = Fs(H1) and
F2 = Fs(H2) and the linear operators Ω̂i(ψ, ·) : Fi → Fi. Here we write SC = H1⊕H̄1 = H2⊕H̄2.
The spaces Hi and H̄i define the decomposition of solutions into respective positive and negative
frequencies. The statement that the two descriptions are unitary equivalent is that there exists a
unitary operator U : F1 → F2 such that for all ψ ∈ S,

U Ω̂1

(
ψ,
)
U−1 = Ω̂2(ψ, ·) . (2.49)

To proceed further, we define the projections K1 : SC → H1 and K̄1 : SC → H̄1 that project
a solution into positive and negative frequency components (according to the inner product
defining H1). Likewise we define K2 and K̄2 for H2. These projections are orthogonal such that
KiK̄i = K̄iKi = 0. The inner product on Hi of the complexified space SC is defined analogously
to Eq. (2.23) as (

Kiψ1,Kiψ2

)
Hi
≡ −iΩ

(
Kiψ1,Kiψ2

)
. (2.50)

Equivalently, the projection operators Ki ensure that this inner product remains positive definite.
The above equation may seem somewhat circular in defining the projection operators and the
inner products. However, the bottom line is that there are different ways of splitting the
complexified solution space on which the above inner product of projections of ψ1,2 on Hi is
positive. Equivalently, on the conjugate space H̄i, the inner product is defined to be negative of
above

(K̄iψ1, K̄iψ2)H̄i ≡ +iΩ
(
K̄iψ1, K̄iψ2

)
. (2.51)

Hence the statement of Eq. (2.49) becomes

U
[
ia1

(
K̄1ψ

)
− ia†1

(
K1ψ

)]
U−1 = ia2

(
K̄2ψ

)
− ia†2

(
K2ψ

)
, (2.52)

where ai and a
†
i are annihilation and creation operators of the Fock spaces Fs(Hi). Here the key

point is that a positive frequency solution corresponding to H1 decomposition will in general
have both positive and negative frequency components in the basis of H2 and H̄2 Hilbert spaces.
Let us now then define restrictions of the projections Ki and K̄i on subspaces Hj for i 6= j:

A : H2 → H1 , B : H2 → H̄1 , (2.53)
C : H1 → H2 , D : H1 → H̄2 ,

where A and B are restrictions of K1 and K̄1 on H2. Likewise, C and D are restrictions of K2

and K̄2 on H1. For example, for χ ∈ H1, Cχ = K2χ. Accordingly the restrictions on conjugate
1It should be kept in mind that, in line with the remark made earlier, SC is not a straightforward complexification

of the real solution space S. We will however continue to gloss over this subtlety.
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Hilbert spaces H̄i are written as

Ā : H̄2 → H̄1 , B̄ : H̄2 → H1 , (2.54)
C̄ : H̄1 → H̄2 , D̄ : H̄1 → H2 ,

We can derive properties of these maps and relation amongst them by considering various
inner products. For χ, ψ ∈ H2,(

ψ,H
)
H2

= −iΩ
(
ψ̄, χ

)
(2.55)

= −iΩ
(
K1ψ + K̄1ψ,K1χ+ K̄1χ

)
= −iΩ

(
K1ψ,K1χ

)
− iΩ

(
K̄1ψ, K̄1χ

)
=
(
Aψ,Aχ

)
H1
−
(
Bψ,Bχ

)
H̄1

=
(
ψ,A†Aχ)H2 −

(
ψ,B†Bχ

)
H2
,

such that

A†A−B†B = 1 . (2.56)

Now start with χ ∈ H2 and ψ ∈ H̄2:

0 =
(
ψ, χ

)
H2

(2.57)

= −iΩ
(
K1ψ,K1χ

)
− iΩ

(
K̄1ψ, K̄1χ

)
=
(
B̄ψ,Aχ)H1 −

(
Āψ,Bχ

)
H̄1

=
(
A†B̄ψ, χ

)
H2
−
(
B†Āψ, χ

)
H2
,

such that

A†B̄ = B†Ā . (2.58)

Likewise we have

C†C −D†D = 1 , C†D̄ = D†C̄ . (2.59)

Starting with
(
ψ,Aχ

)
H1

with ψ ∈ H1 and χ ∈ H2 we can show

A† = C (2.60)

and with
(
ψ, B̄χ

)
H1

with ψ ∈ H1 and χ ∈ H̄2 we can show

B̄† = −D . (2.61)

In particular from Eq. (2.56) it follows that A−1 must exist. If not then we could find a non-
zero vector v that evaluates to zero when operated upon by A. By considering

(
v, (A†A−B†B)v

)
we arrive at a contradiction. Likewise C−1 must exist. The unitary transformation along with
these projection matrices A,B,C,D constitute the so called Bogoliubov transformation.

Using the transformations above we can ask how does the vacuum state in H1 Hilbert space
looks like in the H2 decomposition. We might as well ask how any generic state in H1 is
represented in H2, but it’s easiest to start with vacuum. We essentially would like to know

Ψ = U |0〉1 , Ψ ∈ Fs(H2) , (2.62)
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where |0〉1 = (1, 0, 0, . . .)1. We decompose Ψ in terms of its n-particle amplitudes as in Eq. (2.28).
Now we apply Eq. (2.52) for a generic complex solution ψ ∈ SC on Ψ:[

ia2

(
K̄2ψ

)
− ia†2

(
K2ψ

)]
Ψ = U

[
ia1

(
K̄1ψ

)
− ia†1

(
K1ψ

)]
U−1U |0〉 (2.63)

= −iUa†1
(
K1ψ)|0〉 .

Now, we will choose ψ such that K1ψ = 0. Thus, let ψ = χ̄ ∈ H̄1, such that

0 =
[
ia2

(
K̄2χ̄

)
− ia†2

(
K2χ̄

)]
Ψ (2.64)

=
[
ia2

(
C̄χ̄
)
− ia†2

(
D̄χ̄
)]

Ψ ,

Now let C̄χ̄ = ξ̄ ∈ H̄2, and define

E ≡ D̄C̄−1 . (2.65)

Thus we have the solution for all ξ̄ ∈ H2:[
a2

(
ξ̄
)
− a†2

(
E ξ̄
)]

Ψ = 0 (2.66)

Now we simply compare the action of two operators using Eqs. (2.29) and (2.30) and find

ξ̄aψ
a = 0 , (2.67)

√
2ξ̄aψ

aa1 = ψ
(
E ξ̄
)a1 ,

√
3ξ̄aψ

(aa1a2) =
√

2
(
E ξ̄)(a1ψa2) ,

√
4ξ̄aψ

(aa1a2a3) =
√

3
(
Eξ
)(a1ψa2a3) ,

The equations above hold for any ξ̄ ∈ H̄2. The ψ above is simply the vacuum component (a
complex number) of Ψ. Hence, from the first equation we find ψa = 0, and consequently all the
odd particle amplitudes vanish. Hence, we have

Ψ =

(
ψ, 0,

1√
2
ψEa1a2 , 0,

√
3

8
ψE(a1a2Ea3a4), 0, . . .

)
. (2.68)

Thus we see that the vacuum state in one can correspond to multi-particle state in the other.
The symmetry property of the solutions are consistent since E can be shown using second of
Eq. (2.59) to be symmetric, E† = Ē .

Crucially, we showed that C−1 exits, and hence C cannot vanish. The requirement for
multiparticle states to be observed from the perspective of H2 decomposition is that E 6= 0,
or in other words D 6= 0. From Eq. (2.53) we see that D corresponds to there being non-zero
negative frequency components in a purely positive frequency solution in H1 decomposition.
In our previous analysis of scalar field in flat spacetime, we found that all the global inertial
observers find the same sign of frequencies, and hence share the same notion of vacuum, single
and multi-particle states. To make this clear through an explicit example, next section we will
make a comparison between an observer in the global inertial family and another one who isn’t.
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2.6 The Unruh effect

The preceding discussion suggests that even if we restrict to scalar field in Minkowski spacetime,
a non-inertial observer may not agree with global inertial observers on the particle content of a
given state. A simplest example of a non-inertial observer is that of one moving with uniform
proper acceleration. Consider an global inertial coordinate system xµ and an observer moving
with constant proper acceleration aµ along x direction, where

aµ =
D2xµ

dτ2
=

d2xµ

dτ2
, a2 = α2 . (2.69)

The second equation implies that(d2x(τ)

dτ2

)2
−
(d2t(τ)

dτ2

)2
= α2 . (2.70)

We can then parameterize the coordinates (t, x) in terms of (η, ξ) defined as

t(η, ξ) =
1

a
eaξ sinh(aη) , x(η, ξ) =

1

a
eaξ cosh(aη) , −∞ < η, ξ <∞ (2.71)

such that Eq. (2.70) becomes

e2aξ
(
a(η̇ − ξ̇)2 − η̈ + ξ̈

)(
a(η̇ + ξ̇)2 + η̈ + ξ̈

)
= α2 (2.72)

We can consider a simple solution where η̈ = 0 and ξ̇ = ξ̈ = 0. Hence,

eaξη̇2 =
α

a
. (2.73)

We further exploit the remaining freedom to set

η(τ) =
α

a
τ , ξ(τ) = −1

a
ln
(α
a

)
. (2.74)

Thus, in these coordinates, the proper time is proportional to η. The metric in these coordinates
is given by

ds2 = e2aξ
(
− dη2 + dξ2

)
(2.75)

The spacetime expressed in these coordinates is called Rindler space.
We see that the metric is independent of η. Hence, translations along η are isometries, with

the Killing vector given by

ba = ∂aη . (2.76)

In the (t, x) coordinates, the components are given by

ba =
( ∂t
∂η
∂at +

∂x

∂η
∂ax

)
(2.77)

= a
(
x∂at + t∂ax

)
.

This Killing field generates one-parameter group of Lorentz boost isometries. The vector is time
like in the region |x| > |t| with b2 = −e2aξ. In the regions |x| < |t| the vector is space like,
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and finally on |x| = |t| surfaces it is null. Hence, the observer moving with constant proper
acceleration is confined to the left and right Rindler wedges.

We now go back to the question posed at the end of the previous section – what does the
ordinary Minkowski vacuum state |0〉M look like to our observer with constant proper acceleration.
More specifically, we define H1 in the notation of previous section to be the Hilbert space seen
by global inertial observer with the initial data specified on the Cauchy surface Σ at t = 0. Let
the portions of Σ in the left and right Rinder wedges to be Σ1 and Σ2. As remarked earlier, the
key property of the Cauchy surface Σ is that any causal curve passing through an arbitrary point
in the spacetime manifold must pass through Σ. Hence, we can associate the solutions of the
Klein-Gordon equation with the initial data on Σ. Furthermore, the initial data on any closed
subset S ⊂ Σ alone determines the solution of any causal curve passing through S. Thus, we can
consider an alternative quantum field construction for all of Minkowski spacetime with the initial
data specified on Σ1 and Σ2 hypersurfaces. Thus, in our second decomposition the Hilbert space
H2 is defined as

H2 = HL ⊕HR , (2.78)

where the HR consists of solutions with initial data specified on Σ1 in the right Rindler wedge,
and that are positive frequency with respect to the generator ba. Likewise, HL is the Hilbert
space of the solutions with initial data specified on Σ2 in the left Rindler wedge that are positive
frequency with respect to −ba (because on Σ2, ba points downwards, towards negative time
evolution).

Now, the logical way to proceed would be to solve for the Klein-Gordon equation in these
coordinates,

e2aξ
(
− ∂2

η + ∂2
ξ )φ−m2φ = 0 , (2.79)

in the left and right Rindler wedges, and directly solve for the Bogoliubov transformation matrices
by taking inner products with plane wave solutions obtained using the entire Σ hypersurface in
the global inertial coordinates. However, there’s a quicker way to get directly the matrix Eab
defined in Eq. (2.65). It turns out that the solution to the Klein-Gordon equation (in whichever
frame) is uniquely determined by its restriction on the intersecting null-planes hhhA (x = t) and
hhhB (x = −t) [14]. An interesting consequence is that if the solution on hhhA ∪ hhhB is positive
frequency with respect to either the global inertial time or the Rindler time, then it will remain
so throughout the entire Minkowski space. Thus, we simply need to relate the two sets of
solutions, more specifically their Fourier transforms with respect to appropriate time coordinates,
on hhhA ∪ hhhB, and thus find the Bogoliubov transformation matrices.

Now, since we are limiting ourselves to the solutions on the null planes, it will be convenient
to switch to null coordinates (U, V, y, z):

U = t− x , V = t+ x . (2.80)

Thus, on hhhA, we have u = 0 and on hhhB v = 0. In terms of these coordinates, the boost Killing
vector becomes

ba = V ∂aV − U∂aU . (2.81)

Now, on the null planes hhhA,B the coordinates (η, ξ) are no good as ξ blows up. On these
null planes we only need to specify a single coordinate which we will choose to be the Killing
parameter time defined by b(v) = 1 on hhhA and b(u) = 1 on hhhB. Thus, we have

b(v) = V
∂v

∂V
= 1 , (2.82)
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and hence

v =
1

a
ln|V | . (2.83)

Since v grows in the direction of ba, for V > 0, v points in increasing time direction and vice
versa for V < 0. Likewise, the relation b(u) = 1 on hhhB yields

u = −1

a
ln|U | . (2.84)

Now consider a solution ψR,ω that exists only in the right Rindler wedge (including the
null-planes), vanishes in the left Rindler wedge, and oscillates with positive frequency ω > 0 with
respect to the Rindler time (η inside the wedge and u, v on hhhB,A null planes). By the above
initial value formulation, it will then remain positive frequency throughout the right wedge. Let
fR,ω be its restriction on hhhA. Then we have

fR,ω(V, y, z) = Θ(V )h(y, z)e−iωv(V ) . (2.85)

The Fourier transform with respect to V is given by

f̂R,ω(σ, y, z) =
1√
2π

∫ ∞
−∞

dV e+iσV fR,ω(V, y, z) (2.86)

=
1√
2π
h(y, z)

∫ ∞
0

dV e+iσV exp
(
− iω

a
lnV

)
.

Accordingly, solution in the left wedge can be written by performing the “wedge reflection” isometry
(t, x, y, z) → (−t,−x, y, z). Doing so maps solutions in HR to H̄L. Hence, the restriction of
negative frequency solutions in the left wedge on hhhA is given by

f̄L,ω = Θ(−V )h(y, z)e−iωv(V ) = fR,ω(−V, y, z) . (2.87)

Note that dispite the similarity with fR,ω, this is a negative frequency solution since it’s aligned
with ba (as opposed to −ba). The Fourier transform is given by

ˆ̄fL,ω
(
σ, y, z

)
= f̂R,ω(−σ, y, z) , σ > 0 . (2.88)

We simplify the V integrals by rotating the contours to be along positive and negative
imaginary axes (so that the exponential eiσV converges). To be able to do this, we choose the
branch cut of the Logarithm to be along negative real axis. Hence for V = +iy and y > 0 in the
first integral the substitution

lnV =
iπ

2
+ lny , (2.89)

gives

f̂R,ω(σ, y, z) =
ie
πω
2a

√
2π
h(y, z)

∫ ∞
0

dy e−σy exp
(
− iω

a
lny
)
. (2.90)

and setting V = −iy in Eq. (2.88) gives

ˆ̄fL,ω(σ, y, z) =
−ie

−πω
2a

√
2π

h(y, z)

∫ ∞
0

dy e−σy exp
(
− iω

a
lny
)
. (2.91)
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We immediately notice that the following linear combination vanishes for σ > 0:

e−
πω
a f̂R,ω(σ, y, z) + ˆ̄fL,ω(σ, y, z) = 0 (2.92)

Thus, conversely the function

F̂ω ≡ e−
πω
a f̂R,ω(−σ, y, z) + ˆ̄fL,ω(−σ, y, z) (2.93)

= e−
πω
a

ˆ̄fL,ω(σ, y, z) + f̂R,ω(σ, y, z) ,

vanishes for σ < 0, and is thus a purely positive frequency solution in the inertial time. Thus
from this it follows that the solution in the entire spacetime obeys

Ψi = ψR,ωi + e−
ωi
a ψ̄L,ω , (2.94)

where ψR,ωi ∈ HR and ψ̄L,ωi ∈ HL. By repeating these arguments but starting with a negative
‘R-frequency’ solution we can derive that the solution

Ψ′i = ψL,ωi + e−
ωi
a ψ̄R,ωi , (2.95)

is also purely positive frequency with respect to the inertial observer. Hence, in terms of the
projectors C and D defined above in Eq. (2.53) that project a positive inertial frequency solution
onto H2 ⊕ H̄2, we have

CΨi = ψR,ωi , CΨ′i = ψL,ωi , (2.96)

DΨi = e−
πωi
a ψ̄L,ωi , DΨ′i = e−

πωi
a ψ̄R,ωi ,

Hence, we find that

DC−1ψR,ωi = e−
πωi
a ψ̄L,ωi , (2.97)

DC−1ψL,ωi = e−
πωi
a ψ̄R,ωi ,

Since {ψR,ωi} and {ψL,ωi} form a complete basis of H2 = HL ⊕HR, we have thus determined
the matrix Ēab = DC−1 defined in Eq. (2.65)

ψR,aψR,bĒab = e−
πωi
a , (2.98)

such that

Eab =
∏
i

e−
πωi
a 2

(
ψR,ωi

)(a(
ψL,ωi

)b)
, (2.99)

Thus we have

U |0〉M =
∏
i

∞∑
n=0

e−
nπωi
a |ni,R〉 ⊗ |ni,L〉 (2.100)

where we have defined the n-particle states as

|ni,R〉 ≡
1√
ni,R!

(
a†i,R

)ni,R |0〉R . (2.101)

ρR =
∏
i

∞∑
n=0

e−
2nπωi
a |ni,R〉〈ni,R| (2.102)
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