

Paul Scherrer Institut

Markus Stadler

Undulator and 40.5mm Cavity BPM System Synchronization Requirement

MBU (Modular BPM Unit) Rack

//) 216³/₃ MHz Reference Signal Input

Brief Explanation of Cavity-BPM System

- Do a downconversion for Y-, Z- and Reference cavity signal
- Extract position information from amplitudes of sampled IF waveforms

→ one top-sample per bunch bears most of the amplitude information → Corrupted by LO phase and Sampling phase jitter (and others)

Effect of Timing Jitter

Effect of timing jitter

- Long therm phase drifts (>10sec) can be detected and corrected electronically
- frequency drifts cannot be corrected

	overall max:	reference timing:	time scale:		
RF jitter ($\Delta t_{A} - \Delta t_{LO}$)	350 fs-rms	<100 fs-rms	10 s		
Sampling jitter ($\Delta t_{A} - \Delta t_{CCLK}$)	1 ps-rms	<100 fs-rms	10 s		
		b	beam parameters (orbit,		

beam parameters (orbit, bunch timing,..) should remain constant during this time !

Offset frequency drifts cannot be detected \rightarrow short&long therm drift requirements

Summary list of timing requirements for the Cavity BPM Systems ¹⁾

No.	Property	Min.	Тур.	Max.	Unit	Comment
1	Phase Noise @ 10Hz			-95	dBc/Hz	
2	Phase Noise @ 100Hz			-115	dBc/Hz	
3	Phase Noise @ 1kHz			-135	dBc/Hz	
4	Signal Level	7.5	8	8.5	dBm	
5	Frequency		216.666667		MHz	
6	Peak-Peak Frequency Drift (Short & Long Term)			30	ppm	
7	Beam Arrival Time Jitter & Drift Relative To Reference Clock			100	fs peak-peak	
8	Bunch Spacing		N*48		Ref. clock periods	N=Integer
9	Connector Type @ MBU		SMA			

Table 3-4: Machine Reference Clock & Beam Timing Requirements for Cavity BPM RFFE

1) B. Keil: Infrastructure Requirements for the European XFEL Beam Position Monitor and Intra Bunchtrain Feedback Electronics

