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Summary
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 Basics of synchrotron radiation
 Wiggler/undulator
 Synchrotrons/FELs
 Self-amplified spontaneous emission – SASE

 Properties: high brilliance, wide energy range, small source size
(for FELs: short pulses, full coherence)

Today: What can we investigate with the light sources?: some examples
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Questions:

• What properties of the light must be considered in experiments?
• What are they important for, for example? 
• What is so useful in using synchrotrons or FELs? Why X-rays?
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Illustrative summary of x-ray and γ-ray interactions. J. Anthony Seibert, and John M. Boone JNMT 2005;33:3-18 Copyright © Society of Nuclear Medicine and Molecular Imaging

X-ray – matter interaction

(elastic)

(inelastic)

(Fluorescence)

/ (or Auger electron)

Thomson
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Photon energy dependent…

| Introduction to Photon Science | Sadia Bari



Page 6

Probing structure and dynamics of matter
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Reveal the structure and dynamics of matter by performing scattering experiments with photons 

E1, p1
sample

detector

Analyze the distribution of scattered photons in reciprocal space           Diffraction

…  in real space             Imaging

Analyze the energy spectrum of scattered (or absorbed) photons or electrons and ions   Spectroscopy

Analyze the temporal evolution of the scattering/absorption process      Time-domain methods

E2, p2

E – Energy
p – momentum

photon in –
photon out
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Scientific experiments at PETRA III
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Physics, Chemistry, Biology, Medicine

Scattering and diffraction

• Small angle X-Ray scattering

• Diffraction and crystallography (General, powders, proteins, high pressure, surfaces)

Imaging

• Microtomography

• X-Ray micro fluorescence

Spectroscopy

• XUV fluorescence spectroscopy

• X-ray absorption spectroscopy

• X-ray photoemission spectroscopy

24 Undulator beamlines
About 2000 scientists from about 400 institutes
About 4000 hours of user beamtime per year

Weak signals
e.g. High collimation
e.g. Small samples

Tunable wavelength
Time structure

Experiments concentrate on experiments with small focus primary beams (𝜇𝜇𝜇𝜇,𝑛𝑛𝑛𝑛)
and “photon hungry” experiments
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First experiments using synchrotron radiation (1964 – 1975)

| Introduction to Photon Science | Sadia Bari

1970: Small angle X-ray scattering on muscle fibres
Rosenbaum, Holmes, Witz, Nature, 230(1971)435

Sample

D
etector

1970

1996

Muscle Tandon

Bone

Muscle Fibre

Fibrils
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X-ray diffraction from crystalline structures
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Max von Laue 
(1879 – 1960)

First diffraction patterns obtained by Max v. Laue in 
1912 with X-ray tubes

• Each scatterer re-radiate
sperical waves

• Constructive interference
if 𝒏𝒏𝝀𝝀 = 𝟐𝟐𝟐𝟐 𝒔𝒔𝒔𝒔𝒔𝒔𝜽𝜽
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Protein crystallography
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Tiny samples
Huge unit cells
Light elements
Sensitive to radiation damage
High resolution necessary

narrow energy band
high degree of collimation

High brilliance required



Page 11

Structure determination of proteins
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From diffraction pattern to 3D structure

Diffraction pattern

Protein crystal

X-rays

Software assisted 
structural analysis

Electron density map

Protein structure
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Revealing structure and dynamics of ribosome

| Introduction to Photon Science | Sadia Bari Schlünzen, ..., Yonath, Cell, 102(2000)615

Ada Yonath:

 Head of the MPG-work group „Structure
of the Ribosome“ at DESY, 1986 – 2004

 Nobelprize Chemistry 2009
(with T. Steitz and V. Ramakrishna) 

Small
Subunit
(30S)

Large
Subunit
(50S)

Aminoaci
d

Protein under
construction
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Very large biomolecules
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Nanometer-sized viruses

J.M. Grimes et al., Nature 395, 470-478 (1998)

Example: Blue Tongue Virus
70 nm diameter!
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Corona research
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https://photon-science.desy.de/research/research_on_sars_cov_2_at_desy_light_sources/index_eng.html
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Grazing-incidence small-angle scattering
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GISAXS for surface analysis

• Scattering by structures that 
are much larger than the 
wavelength of the radiation

• 2-D detector records the 
scattered intensity at small 
angles for the observation of 
lateral sizes ranging from a 
few up to hundreds of 
nanometers. 

• The direct and the reflected 
specular beam are blocked 
by two small beamstops to 
prevent damage or 
saturation of the detector.

Image plate or 
CCD detector
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In-situ studies of nanostructure formation
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Application of GISAXS

• Observation of growth process of thin
films during deposition

• Formation and self-organization of
nanoparticles on surfaces

Sputter
cathode

2D detector

UHV chamber



Page 17

Directly observing magnetic nanostructures during growth via 
GISAXS
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Beamline P03 at PETRA III

Deposition of 10 nm FePt onto flat PS-b-PMMA

• Selective vertical growth of FePt on PS/PMMA
• Lateral structure defined by the polymer template

Results

PILATUS 300k pixel detector

Morphology after deposition of 5.1 nm Fe
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Phase contrast tomography of neurons in brain tissue
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Measure phase shift (measured as intensity
variation) caused by the sample. Application for
low Z materials (e.g. soft tissue).

3D virtual histology at beamline P10
Photon energy 8 keV
Automatic cell segmentation
Rendering of 1.8·106 neurons

M. Töpperwien, F. van der Meer, C. Stadelmann, T. Salditt; „PNAS“, 2018
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Exploiting the coherence of X-rays: static structure
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Imaging of magnetic domains via x-ray holography

S. Eisebitt et al., Nature 432, 885 (2004)

Co/Pt multi-layer

Circularly polarized X-rays,  E = 778 eV

Reference 
beam

Object beam
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Exploiting the coherence of X-rays: dynamic structure

| Introduction to Photon Science | Sadia Bari

X-ray photon correlation spectroscopy (XPCS)
Simulation of Brownian motion

Real 
space

Diffraction 
pattern

Diffraction of coherent light from a 
disordered sample leads to a ‘grainy’ 
diffraction pattern (speckles)
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Geo science experiments (high p, high T)
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1750t press for in situ studies of large sample volumes.
Maximum pressure:   ~ 25 GPa
Temperature:    > 2000 K

Study of material under the conditions of the earths 
lower mantle.

Large volume press of GFZ (Geo Research Center Potsdam) at DESY
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X-ray resonant core excitation spectroscopy
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Probing the local environment with atomic resonances

X-ray interaction with atoms 
and molecule:

X

Resonant
excitation

K

L
M

X

Resonant
ionisation

K

L
M

K

L
M

𝐾𝐾𝛼𝛼

K

L
M

𝐾𝐾𝛽𝛽

K

L
M
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X-ray Absorption Spectroscopy
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Atom specific

PETRA III energy range
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XANES

EXAFS

X-ray Absorption Spectroscopy
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The three energy regions
1. Edge Region: ± 10 eV across the edge:

Electronic structure information (oxidation state, unoccupied molecular levels, and charge transfer)

2. X-ray Absorption Near Edge Structure (XANES, or NEXAFS): 5-150 eV across the edge
Local geometric structure (3D atomic geometry, coordination from multiple scattering analysis)  

3. Extended X-ray Absorption Fine Structure (EXAFS): >150 eV above the edge
Dominated by single photoelectron scattering events (interatomic distances)

Photon energy (eV)

Ab
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tio

n 
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el
d

Core ionization energy

Pre-
Edge

R
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g 

Ed
ge
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X-ray Absorption Near Edge Structure XANES
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Probing the local environment with atomic resonances

Ti K-edge spectra

• dependence on local coordination chemistry 

• provides electronic structure information 
(oxidation state, occupancy of valence orbitals, 
and charge transfer)

Pre-edge and edge 
structures are caused 
by transition to empty 
bound states

1s

3d

4p

continuum

edge

pre-
edge

en
er

gy
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X-ray Absorption Fine Structure XAFS
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Probing the local environment of the absorbing atom

Origin of XAFS: photoelectron (PE) can scatter from neighboring atom
 Scattered PE can return to the absorbing atom, modulating the PE wave function
 Interference at the absorbing atom creates oscillation of the absorption probability 
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X-ray Absorption Fine Structure (XAFS)
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Probing the local environment of the absorbing atom

Origin of XAFS: photoelectron (PE) can scatter from neighboring atom
 Scattered PE can return to the absorbing atom, modulating the PE wave function
 Modulation of the absorption probability 
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Raster scanning X-ray fluorescence
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Raster scanning along 90000 pixels
with 0.5 mm resolution

Typical fluorescence spectrum
in a single pixel

Vincent van Gogh: Meadow with flowers

J. Dik, et al. Analytical Chemistry 2008 80 (16), 6436-6442
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Micro fluorescence tomography
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Analysis of elemental distributions

B. Lengeler et al. JSR. 6, 1153-1167 (1999)

Example: Root of a mahagoni tree

19.5 KeV
6 x 1.6 μm
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Resonant inelastic X-ray scattering (RIXS)
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Resonant excitation and photon emission

• site, element, orbital selectivity
• polarization dependent (symmetry selectivity)
• probing of low-energy excitations
• access ultrafast dynamics 
• sensitive to bulk (large penetration depth)

 measures energy, momentum, and 
polarization change of the scattered photon

 changes of the photon are transferred to 
intrinsic excitations of the material

 provides information about those excitations

Courtesy: J. Nordgren et al.
Dept. of Physics and Astronomy, Uppsala University, Sweden 
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X-ray Photoelectron Spectroscopy
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Angle-resolved photoemission spectroscopy (ARPES):
• General idea: physical properties of materials can be understood and classified according to how 

electrons propagate within it. Use of higher energy photon to probe deeper layer of sample.

• Electron band theory: electron motion in crystals is described by the dispersion relation ℰ𝐵𝐵(𝑞⃗𝑞)
 gives the electronic binding energy as a function of the wave vector of the electron

• Working principle: ℰ𝐵𝐵(𝑞⃗𝑞) is deduced by measuring energy and momentum of “free” photoelectrons 
and applying the energy and momentum conservation law

• Energy: ℰ𝑘𝑘𝑘𝑘𝑘𝑘 = ℏ2𝑞𝑞𝑉𝑉
2

2𝑚𝑚
= ℏ𝜔𝜔 − 𝜙𝜙 − 𝓔𝓔𝑩𝑩

𝜙𝜙 the work function of the material

Photoelectron
spectrum

https://commons.wikimedia.org/w/index.php?curid=90955767
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Photoelectron Spectroscopy
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Angle-resolved photoemission spectroscopy (ARPES):
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X-ray Photoelectron Spectroscopy
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Angle-resolved photoemission spectroscopy (ARPES):

• Localized core states: determination of  ℰ𝐵𝐵 by measuring ℰ𝑘𝑘𝑘𝑘𝑘𝑘 (knowing ℏ𝜔𝜔 and 𝜙𝜙)

 provides fingerprint of chemical composition of the near-surface region

 basis for UV and X-ray photoelectron spectroscopy (UPS and XPS) in surface science

 electron spectroscopy for chemical analysis (ESCA)

Kai Siegbahn 
1981 Nobel Prize in Physics 

https://commons.wikimedia.org/w/index.php?curid=17267639



Page 38

Action spectroscopy
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When photon or electron cannot be measured

In some cases (low target density, confined experimental geometry etc..),
measuring the absorption or scattering of light is impossible.

Instead: measure the action of the light on the molecule = fragmentation
Photo-ionization  Ions can be manipulate in electric fields
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Action spectroscopy
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E1 E2 E3

Photon energy

Io
n 

yi
el

d

E1
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X-ray Action Spectroscopy
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Near Edge X-ray Absorption Mass Spectrometry (NEXAMS)

π*
C=C

π*
CONH 

σ*
C-N 
σ*

C-H

Carbon K-edge
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NEXAMS
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at the C, N, and O K edges

NH3
+

O

OH

NH
O

NH
O

NH
O

NH
O

S
CH3

OH

S. Dörner et al., J. Am. Soc. Mass Spectrom. 32, 670 (2021).

• Resonant excitation to molecular orbitals

• Probe of the local structure and conformation

• Probe of the protonation site

Nitrogen K-edge

Oxygen K-edge

Carbon K-edge

NH3
+

O

OH

NH
O

NH
O

NH
O

NH
O

S
CH3

OH
NH3
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Experiments with FELs
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Comparison undulator radiation – X-ray FEL radiation
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1013
  Photonen

109
  Photonen

FEL

Undulator
   (x 10  )6

100 ps

100 fs

Photons

Photons

time

2-100 fs

Microbunching in the SASE process

(simulation by Sven Reiche)
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Why use an FEL for structure studies?
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 Ultrafast changes of structure
 from atoms to solids, including changes of the 

associated electronic structure

 “femtochemistry”

 Structure determination of non-crystalline objects 
and very small (nano-) crystals
 Dream: biomolecules in 3D that do not form crystals
 Understanding the structure of biomolecules with atomic

(~0.1 nm) resolution enables to reveal & understand their
function

 Understanding function allows to develop treatments, 
medication, drugs
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The ultimate goal: single-molecule diffraction
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Detector 
Particle selection 

X-rays
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Time scales
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F. Krausz, M. Ivanov
Review of Modern Physics 81, 163 (2009) 
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Making molecular movies

| Introduction to Photon Science | Sadia Bari

Eadweard Muybridge
1892
European XFEL

Courtesy European XFEL
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The ultimate goal: recording the “molecular movie”
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Snapshots for different times after excitation (pump-probe spectroscopy)      

 “motion picture” of the reaction
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Coulomb repulsion…
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http://www.magnificentrevolution.org/2009/07/mag-rev-on-bbc/
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Theoretical Prediction
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Nature 406, 752 (2000)
Explosion of a biomolecule (T4 lysozyme) after 
exposure to a 2-fs XFEL pulse     (E = 12 keV)

‘diffract before destroy’
(it works !)
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Determine the structure of bio-particles
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105-107 patterns

Classification Averaging Orientation Reconstruction

Diffraction pattern

Particle injection
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Double-sided velocity map imaging in CAMP at FLASH
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ve
lo
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ty

m
ap

im
ag
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g

(V
M

I)
MCP + phosphor or 
delay-line anode

pulsed molecular beam
1800m/s, <1K, 60Hz

X-ray FEL
740/1590eV, 80fs, 
1-3mJ, 120Hz, 50μm

Nd:YAG alignment laser
1064nm, 10ns, 500mJ,
30Hz, 70μm

Ti:Sapph pump laser
800/266nm, 70fs, 
2mJ/30μJ, 120Hz, 50μm

delay adiabatic alignment:
probing ensemble of 
molecules

ion 
imaging

MCP + phosphor or 
delay-line anode

electron 
imaging

D. Rolles, R. Boll et al., J. Phys. B 47, 124035 (2014)
L. Strüder et al., Nucl. Instrum. Meth. A 614, 483 (2010)
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First demonstration of 
ultrafast coherent X-ray 
diffraction at FLASH
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Incident FEL pulse: 
30 fs, 32 nm, 
3 x 1013 W cm-2

Conclusion: diffraction takes place before the sample is destroyed !

Pulse #1: Diffraction pattern Pulse #2 sees structure destroyed by pulse #1

H. Chapman et al. Nature Physics 2, 839 (2006)

Reconstructed image
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Diffraction from a mimivirus
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Graphic: wikipedia.org

Measured diffraction

Wavelength = 7 nm 
NA ~ 0.51

1/q (nm
)

0

13 nm

13 nmSamples: Uppsala University and CNRS, Aix-Marseille Université
FEL experiments: MPI , CFEL @ DESY, Uppsala, SLAC

200 nm

2D reconstruction unconstrained 
modes subtracted

Chapman, Hajdu et al.
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Serial femtosecond X-ray crystallography (SFX)
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A riboswitch at work

Yun-Xing Wang, Nature (2014)

Riboswitch from the bacterium Vibrio vulnificus
(a close relative of the cholera germ)
Active centre is aptamer = sequence of nucleic acids (easy to
synthesize into nanocrystals

Activated by signal molecule (ligand) Adenine (in green)

After activation the gene related to the switch in not read out 
anymore

• Delay adjustment allows to follow intermediate states of
reaction

• Tiny crystals are required , larger crystals would decompose
upon the involved conformational changes and ligand diffusion
would be too slow and uneven

Mix and inject concept

aptamer ligand

| Introduction to Photon Science | Sadia Bari
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Serial femtosecond X-ray crystallography (SFX)
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15/07/22 · Press-Release: X-ray laser decodes 
“off” switch for cell signals. Findings may advance 
development of accurately targeted drugs…

Y. Kang et al. „Nature“ (2015); DOI: 10.1038/nature14656
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Possible new approach for sleeping sickness drugs
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Serial femtosecond X-ray crystallography (SFX)

 Certain insect cells to crystallise biomolecules within 
them

 Tracked down a potential target for new drugs against 
sleeping sickness: By decoding the detailed spatial 
structure of a vital enzyme of the pathogen, the 
parasite Trypanosoma brucei. The result provides a 
possible blueprint for a drug that specifically blocks this 
enzyme and thus kills the parasite

University of Lübeck/DESY, Lars Redecke

Structure of the parasite's IMP dehydrogenase. The active 
enzyme forms pairs (dimers), the “switch” region is shown 
in shades of blue.

K. Nass et al., Nature Commun. 11, 620 (2020)
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One last example: spectroscopy at an FEL
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What happens to thymine after photoexcitation?
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GS

ππ*

nπ*
26

7 
nm

ex
ci

ta
tio

n

E

RC

?
? ?

?
• Overall timescale?
• Which electronic states are

populated?
• How does the geometry

change?

?
π-MO

π*-MO

n-MO

Courtesy of T. Wolf  (SLAC)
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Photon energies to probe the dynamics
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π-MO

π*-MO E

C-1s

N-1s

O-1s

Valence electrons:
Delocalized,
Overall time scales, 
XUV, high harmonic generation

Core electrons:
Localized,
site-specific geometry evolution,
excited state characters
X-ray FEL

…

Courtesy of T. Wolf  (SLAC)
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Localized structural evolution:
Time-resolved Auger electron spectroscopy

GS

ππ*

nπ*

E (1s-1)ππ*

56
5 

eV
Pr

ob
e

565 eV

Valence
MO

Courtesy of T. Wolf  (SLAC)
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Localized structural evolution:
Time-resolved Auger electron spectroscopy

Detection

GS

ππ*

nπ*

E (1s-1)ππ*

Au
ge

r d
ec

ay
Dicationic
states

Valence
MO

Ekin

Courtesy of T. Wolf  (SLAC)
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Localized structural evolution: 

64GS

ππ*

nπ*

E (1s-1)ππ*

Au
ge

r d
ec

ay

Dicationic
states

• Localized probing at oxygen K edge
• Repulsive nature of dicationic states
=> High sensitivity to CO bond

length change

Valence
MO

Detection

Ekin

Courtesy of T. Wolf  (SLAC)
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Localized structural evolution: 
Time-resolved Auger electron spectroscopy

65
McFarland et al. Nature Commun. 2014, 5, 4235

• Localized probing at oxygen K edge
• Repulsive nature of dicationic states
=> High sensitivity to CO bond

length change

Valence
MO

100 fs

Geometry change: 0.15 Å
Spectral change: several
eV and electronic decay
within 200 fs to the nπ*

E
kin

Courtesy of T. Wolf  (SLAC)
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Questions?
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Rudek, B., Son, SK., Foucar, L. et al. Ultra-efficient ionization of heavy atoms by intense 
X-ray free-electron laser pulses. Nature Photon 6, 858–865 (2012). 
https://doi.org/10.1038/nphoton.2012.261
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Thank you! 
Have fun with the further
lectures!

| Introduction to Photon Science | Sadia Bari

And enjoy your projects@DESY!
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