Introduction to Photon Science

Go to www.menti.com and enter the code 7607 2136

Sadia Bari DESY Ukraine Winter School 2023

Content

• PART I:

- History of X-ray Sources
- Principle of Synchrotrons
- Principle of Free-Electron Lasers

• PART II:

- Science at Synchrotron facilities
- Science at FEL facilities

Introduction to Photon Science

Part I: Basics of synchrotrons and free-electron lasers

A short history of X-ray sources

Generation of X-rays: X-ray tube

From discovery to first application

1895: Discovery of X-rays by Wilhelm Conrad Röntgen

Generation of X-rays: X-ray tube

From discovery to first application

1 month later: first X-ray image

25 min exposure time

Röntgen's wife hand

30-150 kV

Generation of X-rays: X-ray tubes

X-ray diffraction from crystalline structures

First diffraction patterns obtained by Max von Laue in 1912 W. Friedrich *et al. Annalen der Physik* **346**, 971–988 (1913)

Max von Laue (1879 – 1960) Nobel Prize 1914

ZnS crystal

Generation of X-rays: X-ray tubes

X-ray diffraction from crystalline structures

1952: The first X-ray diffraction pattern of DNA 62 hours exposure time !

Rosalind Franklin (1920 – 1958) Nobel Prize 1962

The **Nobel Prize in Physiology or Medicine 1962 was awarded** jointly to Francis Harry Compton Crick, James Dewey Watson and Maurice Hugh Frederick Wilkins **"for their discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material"**

Generation of X-rays: Betatron

Acceleration in a magnetic field

The Betatron

World's Most Powerful X-Ray Machine Holds Vast Possibilities for Medicine, Industry, Research

Protessor Donard W. Kerst with the first betatron, having 2.5-million voits output energy, on the table and the 20-million-volt machine alongside. The circular vacuum tube of the large unit can be seen in place in the center of the betatron, between the pole faces of the $3\frac{1}{2}$ -ton magnet. The larger betatron is only three feet high

Scientific American, Vol. 168, No. 5 (MAY · 1943), pp. 207-209

Generation of X-rays : Synchrotron

First observation of synchrotron radiation

relativistic speed

April 24, 1947: First observation of SR at General Electric 70 MeV synchrotron (Langmuir, Elder, Gurewitch, Charlton, Pollock)

Generation of X-rays : and now?

Linac and 3rd generation synchrotron

Big facilities for studying tiny objects...

Synchrotron radiation facilities worldwide

Synchrotron radiation facilities in Europe

DESY machine history

2000 Employees, 3000 International Guests (100 apprentice, 100 undergraduate, 350 PHD, 300 Postdoc) Annual Budget: 230 M€

DESY founded 1959 as an Electron Synchrotron Facility for Elementary Particle Research

1964DESY (Synchrotron)e-7.4 GeV1974DORIS (Storage Ring)300m e+/e-3.5 GeV (later 5 GeV)

1980 HASYLAB@DORIS

1984 Upgrade with 7 Wiggler/Undulator Beamlines1993 Dedicated SR Source at 4.5 GeV

1978 PETRA (Storage Ring) 2.3km e+/e- 19 GeV

1990 HERA (Storage Ring) 6.3km p+/e- 920 GeV / 27.5 GeV (using PETRA as Booster)

1997FLASH (Free Electron Laser)2005Dedicated User Facility

2007 Shutdown of HERA and Reconstruction of PETRA \rightarrow PETRA III

2009 PETRA III Dedicated SR Source at 6 GeV (presently most brilliant SR source worldwide)

2012 Shutdown of DORIS2014 FLASH II (Extension of FLASH)

Participation in the European XFEL project (operation since 2017)

DESY. | Introduction to Photon Science | Sadia Bari

Basics of Synchrotrons

Synchrotrons and free-electron lasers (FELs)

Synchrotron

Principal structures

- 1. e⁻ are produced and accelerated in a LINAC
- 2. e⁻ are accelerated to nominal energy (GeV) in the booster accelerator
- 3. e- bunches travel in the storage ring in a wide circular path, emitting light as they change directions
- 4. X-ray light, emitted towards "beamlines"
 - \rightarrow experiments

An Introduction to Synchrotron Radiation: Techniques and Applications, 2nd edition, P. Willmott, 2019, Wiley

Synchrotron Radiation (SR) is a relativistic effect

γ the relativistic Lorentz factor

Many features can be understood in terms of two processes:

- Lorentz contraction
- Doppler shift

When a relativistic charged particle is travelling through a periodic magnetic field, in the particles rest frame it sees a magnetic field rushing towards it.

In our rest frame the magnet period is λ_u

Synchrotron Radiation (SR) is a relativistic effect

γ the relativistic Lorentz factor

Many features can be understood in terms of two processes:

- Lorentz contraction
- Doppler shift

When a relativistic charged particle is travelling through a periodic magnetic field, in the particles rest frame it sees a magnetic field rushing towards it.

In our rest frame the magnet period is $\boldsymbol{\lambda}_{u}$

$$\begin{split} \gamma &= \frac{E}{E_0} & \text{c is the velocity of light in free space} \\ \gamma &= \frac{v}{c} & \text{s the velocity of the electron} \\ \beta &= \frac{v}{c} & \text{E is the relative velocity of the electron} \\ \beta &= \sqrt{1 - \frac{1}{\gamma^2}} & \text{This } \gamma \text{ factor turns up again and again in SR !} \end{split}$$

- What is γ at PETRA III ?
- What wavelength does the particle emit?
- What wavelength do we observe?

Synchrotron Radiation (SR) is a relativistic effect

γ the relativistic Lorentz factor

Many features can be understood in terms of two processes:

- Lorentz contraction
- Doppler shift

When a relativistic charged particle is travelling through a periodic magnetic field, in the particles rest frame it sees a magnetic field rushing towards it.

In our rest frame the magnet period is λ_u because of Lorentz contraction the electron sees it as λ_u / γ is the relativistic Lorentz factor

$$\begin{split} \gamma &= \frac{E}{E_0} & \text{c is the velocity of light in free space} & \text{T} \\ \gamma &= \frac{v}{c} & \beta &= \frac{v}{c} & \beta &= 1 \\ \beta &= \sqrt{1 - \frac{1}{\gamma^2}} & \frac{1}{\gamma^2} & \frac$$

The particle emits light of wavelength λ_{μ} / γ

Since it is travelling towards us this wavelength is due to the Doppler effect further reduced to $\sim \lambda_u / 2\gamma^2$

Radiation by acceleration of a charged particle

Figure 3.3 Generation of electromagnetic radiation by acceleration of a charged particle. (a) A charged particle at rest or moving at uniform speed will not emit light, as any observer of the particle detects no lateral component of the electric-field lines. (b) If, however, the particle undergoes acceleration, an observer positioned anywhere other than along the axis of that acceleration (position A), will see a shift in the position and direction of the electric-field lines as the event horizon washes over them at the speed of light (for example, at position B). (c) A charged particle bouncing between two boundaries will generate a corresponding set of pulses of electromagnetic radiation at regular intervals. (d) A simple-harmonic driving force will generate radiation at the same frequency.

An Introduction to Synchrotron Radiation: Techniques and Applications, 2nd edition, P. Willmott, 2019, Wiley

Emission pattern for circular accelaration

Hertzian Dipole

- Every accelerated charge radiates electromagnetic waves
- Oscillatory motion: No radiation in direction of the oscillation
- The maximum radiated power is observed perpendicular to the oscillation direction

Emission pattern for circular accelaration

"Three types" of radiation

Radiation from a bending magnet

Radiation spectrum and critical energy

- The radiation is emitted in the plane of the orbiting particles
- The radiation is linearly polarized in the orbit plane

Undulation motion

 Multiplication of the radiation intensity by periodically repeated magnet structures

Undulator strengh parameter $K = \frac{eB\lambda_u}{2\pi m_e c}$

Energy and direction of radiation emission

intensity of the emitted radiation

N_p = Number of magnet poles N_e = Number of electrons/bunch

Incoherent superposition

 $I \sim N_e N_p$

Partially coherent superposition

$$I \sim N_e N_p^2$$

Photon intensities delivered by different source types

An Introduction to Synchrotron Radiation: Techniques and Applications, 2nd edition, P. Willmott, 2019, Wiley

DESY. | Introduction to Photon Science | Sadia Bari

Quantities to describe photon intensity

Total Flux <i>F</i> number of photons per time and energy interval	$\left[F_{tot}\right] = \frac{Number of photons}{s}$	
Spectral Flux number of photons per time, and energy bandwidth (BW)	$[F] = \frac{Number of photons}{s \cdot 0.1\% BW}$	
Brilliance B number of photons per time, source area, solid angle and energy bandwidth (BW)	$[B] = \frac{Number of photons}{s \cdot mm^2 \cdot mrad^2 \cdot 0.1\% BW}$	Emittance = size × divergence Brilliance = Flux Emittance
Peak brilliance B^{peak} brilliance scaled to pulse duration $ au$	$B^{peak} = \frac{B}{\tau \times f}$	

Degree (fraction) of lateral coherence

$$\frac{4\lambda^2}{Emittance} \leq 1 \quad \Longrightarrow \quad$$

Emittance has a lower (diffraction) limit, at which the source becomes fully lateral coherent

Evolution of synchrotron radiation sources

Smaller, brighter!

PETRA III @ DESY

Characteristic parameters

Vertical aperture of vacuum chamber: 7 mm

PETRA III machine parameters

Electron energy: 6 GeV Circumference: 2304 m Revolution time: 7.685 µs Number of bunches: 960, 480, 40 Bunch separation: 8, 16, 192 ns Bunch length: 13.2 mm, 44 ps Total beam current: 100 mA (top-up mode)

Horizontal emittance:1.2 nm radVertical emittance:0.012 nm rad

Bending magnet field: 0.873 T Bending magnet radius: 22.92 m Critical photon energy: 20.9 keV

DESY. | Introduction to Photon Science | Sadia Bari

PETRA III Facilities

P01.	Nuclear resonant and inelastic scattering	Materials science	
2.5 - 80 keV	Resolution 1 eV to 1 meV sub-micron spatial resolution	P09 ,)	
P02.1:	High-resolution powder diffraction	Catalysis, magnetism	
60 keV.	Resolution	metallic glasses batt	
P02.2:	Microdiffraction under extreme conditions		
25 - 60 keV,	high pressure, high/low temperatures		
P03:	X-ray scattering with micro-/nano-focus		
9 – 23 keV		Colloids, glass transi	
P04:	Variable polarization XUV-beamline	Earth science (P01	
250 - 3000 e	High-resolution ion and photoelectron spectroscopy	High prossure resear	
P05:	Imaging beamline	minoralogy trace alo	
5- 50 keV	DESY 'Ada Yonath'	mineralogy, trace ele	
	Phase- and absorption contrast imaging, tomography	Life science (P11,	
P06:	Hard X-ray micro/nanoprobe	Protein structure, dru	
5 - 21 keV			
	Visualization with micro- to nanometer resolution using X-ray fluorescence, absorption coherent diffraction imaging, ptychography	on spectroscopy, diffraction	
P07:	High energy materials science		
30 - 200 keV	Microfocus	GUI	
P08:	High resolution diffraction, small angle scattering, reflectivity		
5 - 29 keV,	Microfocus		
P09:	Resonant scattering and diffraction, XMCD		
2.7 - 50 keV			
P10:	Coherence applications beamline		
5 - 25 keV	Photon correlation spectroscopy, coherent diffractive imaging of nanostructures, Rheo-SAXS		
P11:	Bio-Imaging and diffraction		
5 - 30 keV,	Micro/nanobeam, biological samples and microcrystals		
P12:	Small angle scattering at biological samples (proteins) in solution		
P13/P14:	Macromolecular crystallography		

Atomic and molecular science (P04) Surface science (P01, P03, P08, P10)

Thin films, wetting phenomena, phase transitions

Naterials science (P01, P02, P04, P07, 09,)

atalysis, magnetism, superconductivity, netallic glasses, batteries

oft matter research (P01, P03, P08, P09, **10**)

colloids, glass transitions arth science (P01, P02, P08, P09) igh pressure research, geophysics, nineralogy, trace element analysis ife science (P11, P12, P13, P14) rotein structure, drug development

Principle of Free-Electron Lasers (FELs)

FELs at DESY

FLASH and European XFEL

Synchrotrons vs. free-electron lasers

Synchrotrons

- Electrons traveling in a wide circular path, emitting light as they change directions
- Light is UV or X-ray, but not (fully) coherent
- Multiple users

Free-electron lasers

- Electrons accelerated in a straight line and manipulated to generate light
- Light is coherent and intensely bright in very short pulses
- Single user

Invention of free-electron laser

Free-electron laser (FEL) vs. conventional laser

• Laser:

amplification due to stimulated emission of electrons bound to atoms (crystal, liquid dye, gas)

FEL:

amplification / gain medium = "free" (unbound) electrons, stripped from atoms in an electron gun, accelerated to relativistic velocities and travelling through an undulator (= periodic magnetic multipole structure) to produce intense radiation

Free-electron laser (FEL) vs. conventional laser

- Quantized energy levels
- Pump energy initiates population inversion
- Stimulated emission
- Optical resonator (cavity)
- Electron energy is not quantized
- "Pump energy" is the kinetic energy of the electrons
- Stimulated emission
- Optical cavity or single pass SASE

Free-electron laser at short wavelength

Optical cavity does not work for wavelength λ < 100nm (low reflectivity, radiation damage)

→ single pass SASE FEL

Self-amplified spontaneous emission – SASE FEL

- Slippage between electrons and photons is λ_{phot} per undulator period
- Electrons in phase with e.m.-wave are retarded ("emit photons"), electrons with opposite phase gain energy ("absorb photons")
- Different trajectories in the undulator (see Lorentz force)
- -> Longitudinal charge density modulation ("micro-bunching") with periodicity equal to λ_{phot}
- -> Self-amplification of spontaneous emission due to increasingly coherent emission from micro-bunches (like point charge)
- $I \sim N_e^2 N_p^2$

Intensity of the emitted radiation

 N_p = Number of magnet poles

Self-amplified spontaneous emission – SASE

Requirement for SASE

- Sood electron beam quality and sufficient overlap between electronbeam and radiation pulse along the undulator:
 - Iow emittance, low energy spread of electron beam
 - extremely high charge density (kA peak currents)
 - precise magnetic field of undulator
 - accurate beam steering through undulator (few µm precision)

Self-amplified spontaneous emission – SASE

Emitted light, temporal distribution

 For a given wavelength there is only one resonant electron energy (continuous energy transfer)

$$\lambda_l = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$$

- Wavelength change by changing the electron energy or magnetic field strength
- FEL process starts from noise: randomly distributed electron bunch and spontaneous undulator radiation
- Radiation pulse is "spiky" in time (and frequency) domain

 External laser seeding

SASE FEL properties

- > high intensity (GW peak power)
- > coherence (laser-like radiation)
- > femtosecond pulses!
- > narrow bandwidth!
- > full wavelength tunability!
- > down to X-rays!
- > but: shot-to-shot fluctuations (w/o seeding)
 - -> very good photon diagnostics are mandatory!

X-ray free-electron lasers worldwide

Free-electron lasers

FLASH

The FLASH facility

DESY. | Introduction

Injector: creating bunches of electrons

- Optical laser strikes Cs₂Te photocathode, releasing a cloud of electrons (1-3% quantum efficiency)
- Electrons move into a magnetic field, 11/2-cell resonator, shaping into a bunch
- Small accelerator module
 "fires" bunch into the main electron accelerator

Superconducting accelerator module

- > Accelerator module with superconducting niobium cavities
- > 25 MV/m routinely
- > Length: 12 m
- > Weight: about 10 tons!

Bunch compressors

- electromagnetic chicane (4 dipole magnets)
- longitudinal compression > of electron bunches
- $\sim 1 \text{ mm} \rightarrow 0.1 \text{ mm}$ >

150 MeV

٢ŀ

RF Gun

Lasers

5 MeV

RF Stations

Electron bunch compression

Increase of electron peak current

- electromagnetic chicane (4 dipole magnets)
- longitudinal compression of electron bunches
- ~1-2 mm → 0.1 mm
 70 A to >1 kA peak current

Undulators

- > 27 m undulator
- > 12 mm fixed gap \rightarrow tuning with accelerator
- Intersections with quadrupole doublets for focusing electron beam, electron beam diagnostics and steerer coils

Superconducting modules: bunch structure

FLASH1 experimental hall – Albert-Einstein hall

Supercond. Linac: up to 17.5 GeV

Undulators: SASE1/2: 34 modules, 212 m total length SASE 3 : 20 modules, 125 m total length

Photon energies: 0.2 – 3 – 26 keV Average brilliance: ~10²⁵ 1/(s·mm²·mrad²·0.1%BW)

Peak brilliance: ~10³³

Pulse length: <100 fs

European XFEL

Science at the beamlines

	Endstation	Science
260-3100 eV 3100-24800 eV	MID	Materials imaging & dynamics: structure determination of nanodevices and dynamics at the nanoscale
	HED	High energy density science: investigation of matter under extreme conditions using hard X-ray FEL radiation, e.g. probing dense plasmas
	SPB/SFX	Ultrafast coherent diffraction imaging of single particles, clusters and biomolecules: structure determination of single particles (atomic clusters, biomolecules, virus particles, cells), serial femtosecond crystallography
	FXE	Femtosecond X-ray experiments: time-resolved investigations of the dynamics of solids, liquids, gases
	SQS	Small quantum systems: investigation of atoms, ions, molecules and clusters in intense fields and non-linear phenomena
	SCS	Spectroscopy & coherent scattering : Electronic and atomic structure and dynamics of nanosystems and of non-reproducible biological objects using soft X-rays

- Basics of synchrotron radiation
- Wiggler/undulator
- Synchrotrons/FELs
- Self-amplified spontaneous emission SASE
- Properties: high brilliance, wide tunable energy range, small source size (for FELs: short pulses, full coherence)

Questions for tomorrow:

- What properties of the light must be considered in experiments?
- What are they important for, for example?
- What is so useful in using synchrotrons or FELs? Why X-rays?