Characterization of Light (Photon Diagnostics @ FLASH).

Sven Toleikis

DESY Ukraine Winter School 2023

16 Februar 2023

Outline

- Introduction what is light?
- Light generation
 - XUV FEL light at FLASH
 - THz light at FLASH
- Light transportation
 - Beamlines: beam transport (mirrors), beam manipulation, etc.
- Light characterization
 - Intensity (# of photons) / Beam position
 - Wavelength
 - Pulse duration / Jitter (to another light source)
 - Polarization
 - Coherence / Wavefront
- Light utilization
 - Example experiments

Light – Intro I

• Light -> more general: electro-magnetic radiation

Light – Intro II

Frequency <-> Wavelength <-> Energy

CLASS	FREQUENCY	WAVELENGTH	ENERGY
V	300 EHz	1 pm	1.24 MeV
<u>й</u> —	30 EHz	10 pm	124 keV
□^ —	3 EHz	100 pm	12.4 keV
sx 🗕	300 PHz	1 nm	1.24 keV
	30 PHz	10 nm	124 eV
	3 PHz	100 nm	12.4 eV
	300 THz	1 µm	1.24 eV
	30 THz	10 µm	124 meV
	3 THZ	100 µm	12.4 meV
	300 GHz	1 mm	1.24 meV
EHF _	30 GHz	1 cm	124 µeV
эпг Пис —	3 GHz	1 dm	12.4 µeV
	300 MHz	1 m	1.24 µeV
	30 MHz	10 m	124 neV
иш —	3 MHz	100 m	12.4 neV
	300 kHz	1 km	1.24 neV
	30 kHz	10 km	124 peV
	3 kHz	100 km	12.4 peV
	300 Hz	1 Mm	1.24 peV
	30 Hz	10 Mm	124 feV
	📕 3 Hz	100 Mm	12.4 feV

Sources at DESY:

- > PETRAIII: 250 eV (XUV) – 200 keV (hard X-rays)
- FLASH: 90 nm – 3.5 nm (~14 eV – 350 eV)
- Optical lasers: UV to NIR
- THz@FLASH:
 1 µm 300 µm (300 THz 1 THz)

Light – Intro III

- electro-magnetic radiation theory
- electric field **E**, magnetic field **B**, electric potential φ, magnetic potential **A**

Maxwell's equations (vector fields)		
$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$	<u>Gauss' law</u>	
$\nabla \cdot \mathbf{B} = 0$	Gauss's law formagnetism	
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	<u>Faraday's law</u>	
$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$	Ampère-Maxwell law	

linearly polarized plane wave

Maxwell's equations (Potential formulation)

$$\nabla^2 \varphi + \frac{\partial}{\partial t} \left(\nabla \cdot \mathbf{A} \right) = -\frac{\rho}{\varepsilon_0} \qquad \qquad \mathbf{E} = -\nabla \varphi - \frac{\partial A}{\partial t}$$
$$\left[\nabla^2 \mathbf{A} - \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} \right) - \nabla \left(\nabla \cdot \mathbf{A} + \frac{1}{c^2} \frac{\partial \varphi}{\partial t} \right) = -\mu_0 \mathbf{J} \qquad \qquad \qquad \mathbf{B} = \nabla \times \mathbf{A}$$

Light – Intro IV

- Electro-Magnetic radiation is quantized: $E = hf = \frac{hc}{\lambda}$
- Universal particle-wave duality (Louis de Broglie)

Max Planck (1858-1947) Nobel Prize in Physics 1918

Albert Einstein (1879-1955) Nobel Prize in Physics 1921

The FLASH facility

SASE movie

Generation of light – accelarator based

 N_U or N_W = # of magnetic periods

 $N_{\rm e}$ = # of electrons in a bunch

bending magnet radiation

 $\propto N_w x$ bending magnet

 $\propto N_{U}^{2}$ x bending magnet

 $\propto N_{\rm U}^2 \times N_{\rm e} \times {\rm bending magnet}$

 $N_e = #$ of electrons in a bunch; e.g. @ FLASH with typ. 0.5 nC per bunch -> $N_e=3.12 \times 10^9$!!!

Current photon parameters of FLASH

Wavelength range (fundamental):

3.5-60 nm (FL1); 3.5-90 nm (FL2)

Spectral width (FWHM):

0.5-1.5 %

Pulse energy:

up to 200 μJ (average), 500 μJ (peak), ~1 mJ (FL2)

Pulse duration (FWHM):

~5 fs -200 fs

Peak power (fundamental):

1-5 GW

Average power (fundamental):

up to 5 W (up to 6000 pulses/s)

Peak brilliance:

up to ~10³⁰ Photons/(s mrad² mm² 0.1% BW)

SASE FEL Properties

- > high intensity (GW peak power)
- > coherence (laser-like radiation)
- > femtosecond pulses!
- > narrow bandwidth!
- > full wavelength tunability!
- > down to X-rays!
- >But: shot-to-shot fluctuations (w/o seeding)
 - -> very good photon diagnostics are mandatory!

Simultaneous FLASH1 and FLASH2 operation

- Superconducting accelerator technology allows long RF-pulses (10 Hz, up to 800 µs) → long electron bunch train, which can be shared between FLASH1 and FLASH2 with 10 Hz
- > Fast kicker and Lambertson septum used to extract a part of the bunch train to FLASH2
- > Two injector lasers: FLASH1 and FLASH2 bunch pattern and charge selected independently
- > Flexible RF-system: amplitude and phase is adjusted independently for FLASH1 and FLASH2

FLASH performance

Spatial Profile

Ce:YAG screen for the spatial profile

Raw data

<- Bunches ->

220 bunches

@ 1 MHz

13.08.2018

13:45

Spectral distribution

THz @ FLASH1

DESY.

frequency / THz

Page 14

THz streaking experiment

FLASH1 experimental hall – Albert-Einstein hall

FLASH2 experimental hall – Kai Siegbahn hall

THz beamline at FLASH

THz laboratory and THz/XUV beamline

THz hutch laser (synchronized to FLASH):

- Wavelength: 1030 nm, 515 nm
- Rep. rate: 2 MHz
- Pulse energy: 100 µJ
- Avg. power: 20 W

Diagnostic tools for FELs.

What kind of diagnostic tools do user need to make efficient use of FELs?

- ➤ intensity
- ➤ beam position
- ➢ focus size
- spectral distribution
- temporal radiation pulse profile
- ➤ coherence
- ➤ polarization

Courtesy S. Reiche

Due to the SASE specific shot-to-shot fluctuation the users need most of this information for every single pulse => online, non-destructive

Light characterisation at FLASH - Introduction.

The *Atomic Photoionization Process* is a perfect candidate for non-destructive, pulse-resolved photon metrology tools.

- ➤ intensity
- beam position
- ➢ focus size
- spectral distribution
- temporal radiation pulse profile
- ➤ coherence
- ➤ polarisation

Gas-Monitor Detectors (GMD)
GMD Split Electrodes
Wigner-Distribution Measurement
Photoionization spectra
Non-linear autocorrelation or (THz or angular) streaking
Wigner-Distribution Measurement
Angular photoemission distribution

The effort for developing such detector systems is extremely high, in particular due to the tight requirements on robustness and reliability.

Requirements for Intensity and Beam Position Detectors

- cover full dynamic range: ~ 6 7 orders of magnitude from spontaneous emission to SASE in saturation
- on-line pulse resolved detectors (non-destructive with respect to the beam)
- Iow degradation under radiant exposure by FEL beam with a peak power of few GW; high linearity
- ultra-high vacuum compatibility

No commercial detectors available!

Gas-monitor detectors for online intensity and beam position monitoring

Equation behind the Gas-Monitor Detector

Quantum Efficiency of the FLASH GMD

calibrated in the PTB laboratory at BESSY II.

Beam position monitor

In collaboration with PTB in Berlin and IOFFE institute St. Petersburg

Example performance – FLASH 1

Example performance – FLASH 2

Specification of the intensity measurements for European XFEL

- Photon energy range: up to 12.4 keV (TDR) (presently >24 keV)
- Number of pulses per second: 30000
- \succ Time resolution: < 200 ns
- Uncertainty for the pulse energy: <10 %</p>
- > Relative uncertainty (pulse to pulse): < 1 % (for more than 10^{10} photon per pulse)
- > Operating pressure: 10^{-6} mbar 10^{-4} mbar

Photoabsorption cross sections of Xenon

B.L. Henke et al., Atomic Data and Nuclear Data Tables 54, 181-342 (1993).

3rd generation GMDs for European XFEL

• Measured uncertainty due to statistical nature of photoionzation:

$$\delta = \frac{\sqrt{N_{\text{ion}}}}{N_{\text{ion}}} = \frac{1}{\sqrt{N_{\text{ion}}}} \implies \delta = 1 \% \text{ if } N_{\text{ion}} = 10^4 \text{ ions generated per pulse}$$

• What the detector size should be?

Photon energy: 12.4 keVEffective length z:Target gas Xe: $\sigma = 0.021 \text{ Mb} (q \approx 8)$ $z = \frac{N_{\text{ion}}}{N_{\text{photon}} \cdot \sigma_{\text{ph}}(\hbar \omega) \cdot n_{\text{atom}}}$ Pressure: $p = 10^{-4} \text{ mbar } (n_{\text{atom}} = 2.4 \times 10^{12} \text{ cm}^{-3})$ $z = \frac{N_{\text{ion}}}{N_{\text{photon}} \cdot \sigma_{\text{ph}}(\hbar \omega) \cdot n_{\text{atom}}}$ Number of photons per pulse: $N_{\text{photon}} = 10^{10}$ $z = \frac{N_{\text{ion}}}{N_{\text{photon}} \cdot \sigma_{\text{ph}}(\hbar \omega) \cdot n_{\text{atom}}}$

Minimum length : **Z** = **20 cm !!!**

3rd generation GMD for European XFEL

High extraction voltage of up to 20 kV - 30 kV has to be applied to prevent detection of highly energetic photoelectrons by the ion detector.

DESY.

XGMD signal: average ion current from Faraday

XGM for European XFEL and SwissFEL: Intensity and beam position with an extended dynamic range.

XGMD with spilt Faraday cup detection electrodes (horizontal beam position) Two HAMPs with huge area open electron multipliers each equipped with a pair of split anodes (horizontal X and vertical Y beam position)

XGMD with spilt Faraday cup detection electrodes (vertical beam position)

Example – European XFEL – SASE 1,2,3

Spectral distribution

Principle of a diffraction grating

- Light is a wave -> diffraction occurs
- Huygens–Fresnel principle
 -> principle of superposition of waves

Example: num. approx.

slit width = wavelength

$$d_m = \mathbf{g} \cdot \sin \varphi_m = m \cdot \lambda, \ m \in \mathbb{N}$$

> Angle of diffracted light is wavelength dependent!

Light transportation – FLASH1 beamlines

VLS online Spectrometer

Page 38

VLS online spectrometer for single pulses

Collaboration with: BESSY, R. Reininger (SAS), F. Quinn (CLRC) et al.

DESY.

Plane Grating (PG) Monochromator Beamline

- 2 beamline branches PG1 & PG2
- Slitless operation
- High flux mode/high resolution mode
- 0th order operation
- PG2 spectrometer mode available

AG Wurth et al.

M. Martins, M. Wellhöfer, J. T. Hoeft, W. Wurth, J. Feldhaus, and R. Follath, *Monochromator beamline for FLASH* Rev. Sci. Instrum. **77** (2006), 115108

PG Monochromator Beamline - Performance

- Photon energy range:
- 20...250 eV (fund.) (...600eV 3rd harm.)
 - Resolving power :
- Photon Flux:

•

- Spot size at sample:
- $10^9...10^{12}$ photons/pulse
- ample: 40 x 100 µm (h x v)

>10⁴

Online determination of the spectral distribution using ion and electron TOF spectrometer

Cross-calibration campaign of OPIS using PG2

OPIS - Online Photoionization Spectrometer:

- installed in FLASH1 tunnel
- Online wavelength monitoring

Using Ion and Electron TOF to determine the FEL wavelength

FEL wavelength (moving average)

- Cross calibration campaign
- OPIS, PG spectrometer, CS spectrometer & VLS spectrometer
- Range 5-31 nm

FLASH2020+

FLASH 'now' vs 2025

FLASH2020+ Upgrades of the facility

FEL Experiments

FLASH

FLASH2020+ seeding in FLASH1

Starting from 2025 1 MHz coherent pulses in soft-X-ray

Combination of HGHG and EEHG:

Fully coherent pulses with
variable wavelength (60 – 4 nm)
tens of fs duration and
1 MHz repetition rate.

Apple III undulators: Variable polarization

Successful seeding relies on high quality e-beam and seed lasers:

- Linac upgrade
- R&D for optimal lasers

<u>Seed 1:</u> ~343 nm, 100 MW, 500 fs

Seed 2: 297-317 nm, 300 MW, 50 fs

Seeding development

Temporal distribution

Simultaneous Measurement of Electron and Photon Pulse Duration at FLASH

S. Düsterer et al., Phys. Rev. STAB 17, 120702 (2014)

Goals for the short pulse studies

- 1. Can we setup the FEL to a **defined** pulse duration
- 2. Calibrate "indirect" methods against "direct" ones
- 3. Measure the scaling factor between **photon** pulse length and **electron** bunch length
- 4. Find out advantages / disadvantages of different methods

Outline – temporal distribution

> Electron beam diagnostics

- Transverse Deflecting Structure (TDS)
- (THz spectroscopy (CRISP))
- (Bunch Compression Monitor (BCM))
- Indirect photon based methods
 - Spectral characteristics
 - (Pulse energy fluctuations statistics)
 - (Mapping SASE to visible light: "afterburner")
- Direct photon based methods
 - Autocorrelation
 - THz streaking
 - Optical-XUV cross-correlation

Electron Diagnostics: transverse deflecting cavity

PRO:

- very good resolution (few fs)
- (meanwhile) online diagnostic
- Arbitrary pulse in bunch train can be measured **CON:**
- only 1 bunch out of bunch train
 -> destructive
- dispersive measurements (chirp)
 -> not online

Courtesy: M. Yan, Ch. Gerth

Photon pulse length diagnostics at PG2

Different methods/tools under development to measure photon pulse length & temporal distribution

- CRISP
- LOLA
- THz streaking
- Reflectivity method
- optical afterburner
-
-

Spectral analysis

Employ Fourier relation between spectral distribution and temporal properties

- requires high resolution PG2 spectrometer
- Spectral correlation yields pulse duration

From spectra to photon pulse duration

Set of FEL spectra

2nd order correlation function (from spectra):

$$g2(\Delta\omega) \propto \frac{\left\langle S\left(\omega_0 - \frac{\Delta\omega}{2}\right) S\left(\omega_0 + \frac{\Delta\omega}{2}\right) \right\rangle}{\left\langle S\left(\omega_0 - \frac{\Delta\omega}{2}\right) \right\rangle \left\langle S\left(\omega_0 + \frac{\Delta\omega}{2}\right) \right\rangle}$$

Expected 2^{nd} order correlation function for given σ_T and electron bunch shape:

 $g_2(\Delta \omega) = 1 + |\bar{F}(\Delta \omega, \sigma_T)|^2$ Fit parameter

A least squares fit optimizes the rms pulse duration σ_T for maximum agreement within a set correlation window.

Lutman et al, PRST 15, 030705 (2012)

Real time analysis of FLASH spectra

DESY.

Direct PHOTON methods: auto correlation

FEL split and delay

R. Mitzner, et al. Optics Express 16, 19909 (2008); F. Sorgenfrei, et al, Rev. Sci. Instrum. 81, 043107 (2010)

Direct PHOTON methods: auto correlation

Pathways to He2+ at 24 nm

Direct PHOTON methods: THz streaking

XUV photon diagnostics: pulse duration The most difficult one

Extensive study to different techniques: Düsterer et al, PRSTAB 17, 120702 (2014)

THz Streaking

measuring the pulse duration and arrival time by means of a single cycle THz streaking field:

- online monitoring
- single bunch resolved measurement
- (almost) non-invasive

(usual) Parameter range

- 20 200 fs
- 4 40 nm
- 1 500 µJ

trace TOF

Towards attosecond pulses

Principle of angle-resolved streaking

Principle:

E. Constant, P. Corkum, Phys. Rev. A. 56 (1997)

Experiment & figure (IR ionization):

P. Eckle, U. Keller, Nat. Phys. 4 (2008)

- Circularly polarized laser field introduces time-dependent shift in streaking angle
- Angle-resolved detection of the photoelectron energy acts like the hands of a stop watch

Instrumentation upgrades and advances

From diagnostic achievements to chirality science at the attosecond frontier in gas and liquid phase

A. DeFanis et al. J. Synchrotron Rad. 29, 755-764 (2022)

SpeAR Project for atto-streaking W. Helml et al.

Synchronization

Femtosecond Optical Synchronization Systems at FLASH and the European XFEL

Wigner distribution measurement of the spatial coherence properties of FLASH

Credits to: Tobias Mey (Laserlaboratorium Göttingen e.V.)

Experimental setup at BL2

LASer in Hamburg, New J. Phys. 12 (2010) 083015

DESY.

Motivation

[4] **Coherent** diffractive imaging [3] 200nm 1µm 2µm [5]

Decreasing coherence

[3] H. N. Chapman *et al.*, "Femtosecond diffractive imaging with a soft-X-ray free-electron laser," Nature Phys. 2, 839-843 (2006)
[4] M. M. Seibert *et al.*, "Single mimivirus particles intercepted and imaged with an X-ray laser," Nature 470, 78-82 (2011)

[5] B. Chen et al., "Diffraction imaging: The limits of partial coherence," Phys. Rev. B 86, 235401 (2012)

Coherence

Mutual coherence function

$$\Gamma(\vec{x}, \vec{s}) = \langle E(\vec{x}_1, t) \cdot E^*(\vec{x}_2, t) \rangle$$
$$= \langle E(\vec{x} - \vec{s}/2, t) \cdot E^*(\vec{x} + \vec{s}/2, t) \rangle$$

 \rightarrow required for interference effects

[6] M. Born and B. Wolf, *Principles of Optics,* Cambridge University Press (1980)

Coherence

Interference of elementary waves $\rightarrow \gamma(\vec{x}, \vec{s})$

[6] M. Born and B. Wolf, Principles of Optics, Cambridge University Press (1980)

DESY.

Wigner distribution function

[8] M. J. Bastiaans, "Application of the Wigner distribution function to partially coherent light," J. Opt. Soc. Am. A 3, 1227-1238 (1986)

Wigner distribution function

[8] M. J. Bastiaans, "Application of the Wigner distribution function to partially coherent light," J. Opt. Soc. Am. A 3, 1227-1238 (1986)
Caustic scan

Wigner distribution

[9] A. Torre, *Linear ray and wave optics in phase space*, Elsevier B.V. Netherlands (2005)

Wigner distribution

Coherence properties

[7] A. Singer *et al.*, "Spatial and temporal coherence properties of single free-electron laser pulses," Opt. Expr. **20**, 17480-17495 (2012)

[10] T. Mey et al., "Wigner distribution measurements of the spatial coherence properties of the free-electron laser FLASH,"

Opt. Expr. 22, 16571-16584 (2014)

Plasma Timing Tool

M. Harmand, R. Coffee, M.R. Bionta, M. Chollet, D. French, D. Zhu, D.M. Fritz, H.T. Lemke, N. Medvedev, B. Ziaja, S. Toleikis and M. Cammarata, "Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers", Nature Photon. 7, 215 (2013)

R. Riedel, A. Al-Shemmary, M. Gensch, T. Golz, M. Harmand, N. Medvedev, M.J. Prandolini, K. Sokolowski-Tinten, S. Toleikis, U. Wegner, B. Ziaja, N. Stojanovic and F. Tavella, "Single-shot pulse duration monitor for extreme ultraviolet and X-ray free-electron lasers", Nature Comm. 4, 1731 (2013)

Experimental setup of spatial encoding tool

Ultrafast plasma switch (a)

- FEL triggers reflectivity/transmission change
- oblique angle of incidence δ
- different parts of FEL wavefront reach sample at different positions
- time axis spatially resolved:

 $\Delta t = \Delta_x \cdot \cos(\delta) \, / c$

 $(\Delta_x: \text{ imaged pixel size, c: vacuum speed of light})$

- \rightarrow extract arrival time (b)
- \rightarrow extract pulse duration

Experimental set-up at XPP (LCLS)

Diagnostic correlation of LCLS experiment at XPP

Spectral vs. Spatial (transmission)

Page 81

Experimental test on Bi

by resorting data accordin to their arrival time ultrafast processes can be resolved

D.M Fritz et al., Science 315, 633 (2007) K. Sokowlowski-Tinten et al., Nature Phys. 422, 287 (2003)

Signal processing for optical–FEL cross correlation

measured transmission change

- a) probe pulse arrives after XUV pulse
- b) probe pulse arrives simultaneously
- c) cross-correlation

(corrected for FEL beam profile)

Data analysis

Cross-correlation function

- arrival time directly obtained from $S(\Delta t)$
- *G*(*t*) ultrafast transmission change
- contains information about FEL intensity $G(t) = G[I_{\text{FEL}}(t)]$

Data analysis and results

FLASH pulse durations at different wavelengths (fused silica sample)

FEL double pulses

DESY.

 Example: FEL double pulses (2x 10 fs) (separated by 20 fs)

Sven Toleikis

Nonthermal graphitization of diamond induced by a femtosecond x-ray laser pulse

- N. Medvedev, H.O. Jeschke, and B. Ziaja; Phys. Rev. B 88, 224304 (2013)
- Mechanism:

short x-ray pulses -> photoionization

- -> photoelectrons -> impact ionization -> secondary e⁻
- -> K-shell / L-shell holes -> Auger decays -> impact ionization -> secondary e⁻
- -> further cascading
- Hybrid model described in:
 N. Medvedev, H. O. Jeschke, and B. Ziaja, New J. Phys. 15, 015016 (2013)

Combines different theoretical approaches:

- MC method to describe photoabsorption and Auger decays + transient nonequilibrium kinectics of high energy electrons and their secondary cascading
 -> transient electron distribution:
 low-energy Fermi-like distribution (e⁻ temperature equation) + high-energy electrons
- The potential energy surface, the collective forces acting on each atom, and the transient electronic band structure are calculated by diagonalizing a tight-binding (TB) Hamiltonian
- Atom dynamics is followed by classical molecular dynamics (MD)

Results / Prediction for diamond

- Damage threshold fluence for a broad photon energy range is always
 ~0.7 eV / atom
- The x-rays induces an ultrafast nonthermal phase transition: nonthermal graphitization of diamond

Damage experiment @ FLASH

J. Gaudin, N. Medvedev, J. Chalupsky, T. Burian, S. Dastjani-Farahani, V. Hajkova, M. Harmand, H.O. Jeschke, L. Juha, M. Jurek, D. Klinger, J. Krzywinski, R.A. Loch, S. Moeller, M. Nagasono, C. Ozkan, K. Saksl, H. Sinn, R. Sobierajski, P. Sovak, S. Toleikis, K. Tiedtke, M. Toufarova, T. Tschentscher, V. Vorlicek, L. Vysın, H. Wabnitz, and B. Ziaja; Phys Rev. B **88**, 060101(R) (2013)

Experiment @ FERMI (a seeded XUV FEL)

F. Tavella, H. Höppner, V. Tkachenko, N. Medvedev, F. Capotondi, T. Golz, Y. Kai, M. Manfredda, E. Pedersoli, M.J. Prandolini, N. Stojanovic, T. Tanikawa, U. Teubner, S. Toleikis, and B. Ziaja,

Soft x-rays induced femtosecond solid-to-solid phase transition

High Energy Density Physics 24, 22 (2017)

Timing tool @ FERMI

- Experimental setup @ FERMI (c)
- Using own NOPA driven by the seed laser:
 32.7 fs (a), 630 nm (b), 300 nJ on target
- Spatial time resolution (of the imaging system and the angle δ): ~4 fs
- XUV beam spot size on target: 150x30 µm²
- Non-damaging mode

- Data analysis of a single-shot cross correlation (CC) (a)
- > FEL at 26.17 nm (47.38 eV)
- Retrieved gating function G(t) and single-shot pulse structure I_{FEL}(t) (b):
 -> single-shot pulse duration: 74.9 fs
- > Jitter analysis for 100 shots (c): arrival time jitter: 2.2 fs (rms)

- Setup @ DiProl beamline
- Target: 300 µm thick poly-cristalline CVD diamond
- XUV beam spot size on target: 17x7.5 µm²
- FEL wavelength: 26.17 nm
- FEL pulse length: 52.5(3.4) fs
- Single shot raw data example
- Scanning time delay in 10 fs steps
- Shot #22: probe pulse hits target prior to FEL pulse
- Shot #34: probe pulse hits the target at the same time as the FEL pulse
- Shot #40: probe pulse hits the target after the FEL pulse

Scanning the target and shooting the diamond target with 10 Hz

- Transient optical transmission at ~630 nm from a diamond sample irradiated with XUV
- Non-thermal graphitization in three steps:
- (i) initial electronic excitation to the conduction band

Excited electrons (%)

0

-100

0

100

> (iii)

Significant decrease of transmission Atomic relocation (from ~140 fs on) Changing the material properties from insulating diamond to semi-metallic graphite Further increase of electron density in CB

 Final atomic relocation in overdense graphite with broken plane orientations

C) 200 fs

200

Time (fs)

300

400

500

• Temporal behavior is independent from the fluence (if above 0.7 eV/atom)

DESY.

Post-mortem analyis

Post-mortem analysis I

Scanning probe microscopy (a), non-contact AFM Scan (b), line-outs (c), phase scan (d)

Post-mortem analysis II

Confocal Raman Micro-Spectroscopy (spot size: ~1 µm)
 C: diamond line @ 1332 cm⁻¹
 A: graphitized layer: D peak (~1350 cm⁻¹), and G peak (~1580 cm⁻¹)

Post-mortem analysis III

- X-ray Photoelectron Spectroscopy (XPS) with an AI (K-α) source (1486 eV): spot size: ~9 µm, measurement depth: 1-5 nm
- a) black lines: non-irradiated diamond sample, 2 different positions, diamond peak @ 285.5 eV
 a) red lines: irradiated sample, 3 different positions of graphitization
- b) determine sp²/sp³ ratio (sp² carbon ~284 eV and sp³ carbon ~284.9 eV)
 -> sp³ hybrid carbon content in irradiated sample positions varies between 27-42 %

"Transparent" aluminium

Microfocusing @ FLASH

Transparent Aluminium - Experimental Setup

Transmission of 92 eV photons thru 53 nm Al foil including 10 nm oxide layers

B. Nagler et al., Nature Physics 5, 693 (2009)

Al after a single photoionization

Al L-edge shift after photoionization

- Removal of 1st 2p electron causes shift of n = 2 shell due to loss of the outer screening.
- Further photons cannot ionize the L-shell
- E_f will increase as there are now four electrons in the conduction band (~ 2.4 eV)

Microfocusing FLASH

Recombination Time

Energy

Fluorescence Maps Valence Band

• Time limited by Auger decay

S. Vinko et al., PRL 104, 225001 (2010)

