Updates on the performance of the BeamCal

Aura Rosca 15th November 2010

Cluster reconstruction algorithm in BeamCal

(Developed by Olga N. and Wolfgang L.)

- Calculate average and rms of the energy deposition of the background in each pad of the BeamCal, from 10 BX;
- Superimpose 1 BX background + 1 high energy electron;
- Subtract the value of the background average from the superposition;
- Search for a cluster generated by a high energy electron:
 - identify towers after the 5-th layer as chains of 10 consecutive fired pads;
 - search for the tower with maximum deposited energy;
- add neighbor towers, in a 3×3 matrix, with an energy larger than 90% of the energy of the central tower;

- exclude all towers that correspond to the found cluster and repeat searching

Calibration curve

Energy deposition from 100 GeV electron showers

Energy resolution

Energy resolution 50 GeV electron

Energy resolution 250 GeV electron **E/E**_{electron}

$$\sigma(E)/E = \sigma_1/E^{1/2} \oplus \sigma_2 \oplus \sigma_3/E$$

$$\sigma_1 = (22.0 \pm 2.50)\%$$

$$\sigma_2 = (2.5 \pm 0.1)\%$$

$$\sigma_3 = 2$$

Reconstruction efficiency

Nominal beam parameters

New parameterization of the efficiency as a function of electron energy and background energy deposition, valid for nominal beam parameters:

```
p0 = f_1(Energy) = 7.534199e-02 + 7.452120e-04*Energy - 2.001878e-06*Energy*Energy p1 = f_2(Energy) = 8.149966e-02 + 9.193878e-04*Energy - 2.437620e-06*Energy*Energy p2 = f_3(Energy) = -1.259418e-01 + 9.974422e+03 / (Energy*Energy) efficiency = f(Energy, EnDensity<sub>Bkgd</sub>) = p0 + 1/(1+p1*exp(p2*EnDensity<sub>Bkgd</sub>))
```

Implementation in Marlin

- Parameterization is used together with a background map of energy density deposition of the background in the BeamCal pads, in the form of a root file;
- The efficiency for each particle can be accessed via the method getGoodnessOfPID() of the class ReconstructedParticle from the Marlin package;
- Parametrization should substitute the old one in the existing processor BCalTagEfficiency;
- Open point: who performs the implementation in the official released?
- Eventually more details from Mikael B. who is using it currently.

Summary

- Clustering algorithm in BeamCal is based mainly on finding the central tower after a background subtraction procedure is applied;
- Energy resolution in BeamCal is: $\sigma_1 = (22.0 \pm 2.50)\%$;
- New parameterization exists of the electron reconstruction efficiency in BeamCal, for nominal beam parameters.