SENSOR DEVELOPMENTS (BeamCal)

Wolfgang Lange, DESY Zeuthen

OUTLINE OF THIS TALK

- 1. Introduction
- 2. Silicon
- 3. CVD Diamonds
- 4. Gallium Arsenide
- 5. Silicon Carbide
- 6. Conclusions

INTRODUCTION

SILICON (1)

- operated as 'extended' pn junction -> depleted intrinsic material (bandgap 1.12 eV)
- The only material which is fully 'under control': reference material
 - technology: availability, structuring, testing, assembly
 - properties: signal yield, stability, long term behaviour
- Problem: radiation hardness:

Sample irradiated with e⁻: Thickness = 280 µm Initial CCD = $280 \mu m$ (100% collection efficiency)

- will improve significantly
- still not sufficient the inner radii of a planned BeamCal

SILICON (2)

- Problem: radiation hardness:
 - design techniques (instead of p on n --> n in p: avoids type inversion)
 - different growth of substrate material (Czochralsky growth)
 - modification of substrate / doping (oxygenation etc.)
- All these 'counter measures' are expensive and time consuming --> *joint effort in collaborations!*
- to be investigated: photo diodes with advanced radhard technology
 - samples from Zheng Li (Brookhaven) and Prague to be shipped soon, expected for next test beam end of June
 - I/V, C/V, spectra of MIPs
 - irradiation in electron beam planned (S-DALINAC)

CVD DIAMONDS - polycrystalline (1)

• operated as 'solid state ionization chamber' (bandgap ~ 5.5 eV)

• Different sources: IAF (Fraunhofer, Freiburg), E6

• state of the art: 4" wafers, 6" possible -> sensor areas $> 50 \times 50 \text{ mm}^2$

• structuring by metallization ('coarse patterns') w/o photolithography

Source (90Sr)

Sensor, Preamp

Trigger

CCE measured: (5 to 50)%

CVD DIAMONDS - polycrystalline (2)

- radiation hard (survival) but no stable and no predictible behaviour:
 - dependence of CCD on dose acquired (pumping / degradation)

- dependence of pumping and degradation on dose rate applied
- changes (vs irrad) observed: improvement, degradation
- actual properties time dependent (relaxation, recovery)

CVD DIAMONDS - polycrystalline (3)

- degradation of E6 and of FAP diamonds similar
- investigations of different samples with Raman spectroscopy:
 - significant lower N₂ content of E6
 - no clear correlation to CCD and rad hardness
 - methods to be improved
- annealing with TLC cycles observed (-> traps)
- annealing with UV observed (-> traps)

CVD DIAMONDS - polycrystalline (4)

- signal yield depends on
 - material (sample)
 - conditioning (history, pumping, dose acquired)
 - actual conditions (dose rate)
- applications w/o threshold: spectrometry
 - instant recalibration necessary

--->

 applications with thresholds counting

CVD DIAMONDS - single crystals (1)

- Single Crystal (CVD grown on substrate) by E6
- Size: 5 x 5 mm², metallization 3 mm in diameter, 320 μ m thick

- Clearly separated spectrum of minimal ionizing particles
- 100% CCE, CCD = thickness, 1 mip results in 11.5 ke⁻ (1.84 fC)

CVD DIAMONDS - single crystals (2)

• Stable for low doses (< 1kGy), higher doses not yet known

BDS7 CCD vs dose at 250 mV/ μ m

CVD DIAMONDS - single crystals (3)

- Installed in ZEUS (HERA, DESY Hamburg)
 close to interaction point (~3m)
- Used as a beam background monitor / counter
- Signals fed into DAQ (histogramming)
- Clear Correlation to beam currents (both: electrons, protons)
 (see talk of Alexandre Ignatienko)

Gallium Arsenide (1)

- operated as
 - 'solid state ionization chamber' (bandgap: 1.42 eV) or as
 - 'extended pn junction': p-i-n structure

Gallium Arsenide (2)

• static measurements (I/V)

Gallium Arsenide (3)

• Spectroscopic measurements (Sr 90)

Gallium Arsenide (4)

• Spectroscopic measurements (90Sr) vs. voltage -> CCD

Gallium Arsenide (5)

- first detector sample with BeamCal geometry (Dubna / Tomsk)
- compensated (Cr doped) -> behaving as insulator

Gallium Arsenide (6)

• static measurements (I/V)

Mounting of sensor – into our test box to be measured with 90Sr

Typical I/V curve for different radii (power dissipation up to ~ 0.5 mW per pad!) <--> ~ 60 mW per sensor

Gallium Arsenide (7)

• Particle detection:

⁹⁰Sr spectrum of one pad (preliminary)

Courtesy:

Konstantin Afanaciev

Silicon Carbide (1)

- wide bandgap material: $\sim (3...3.35)$ eV
 - -> solid state ionization chamber
- normally produced as epi layer (CVD) on silicon (industry!)
- SiC at wafer scale up to 75 mm (3")
- still high defect densities (15 to 30 'micropipes' per cm²)
- cost per cm²: (150 ... 300) Euro
- metal deposition ->
 - Schottky contact
 -> annealing @ high T -> ohmic contacts
- planned collaboration with BTU Cottbus

Silicon Carbide (2)

• low ohmic material - see I/V curve:

• use for detection of ionizing particles impossible (recombination with leakage current)...

CONCLUSIONS

- harsh environment (irradiation) demands new detector materials
- current *silicon* does not survive the high rad level
 - test of developed sensors for such high rad levels
 - search for collaborators to share effort and cost
- GaAs: growing knowledge and experience (LHC etc)
 - promising detector capabilities
 - samples investigated, measurements to be continued
- pCVD diamonds survive high doses
 - current samples are not (long term) stable as detectors
 - recommended only for counting applications (threshold!)
- Silicon Carbide is a candidate for radiation hardness
 - we need high ohmic material (difficult to get)
 - first investigated sample impossible to use

