

universität freiburg

Bundesministerium für Bildung und Forschung

Photon Yield Response of 1-Cell WOM-LS Prototype Detector

 $3^{\rm rd}$ High-D Consortium Meeting

Fairhurst Lyons February 9, 2023

Universität Freiburg

Testbeam Setup

- LS cell on turntable (y-rot.), on movable stand (x/y-trans.)
- Trigger \rightarrow beam telescope: coincidence of 4 PMTs

Schematic of Sensors (Back View)

• Raw signal for 1 event: E = 1.4 GeV, beam at (0,0), 0°

Manipulated Data

- Signal for all events: E = 1.4 GeV, beam at (0,0), 0°
- Charge spectrum integrated for each event \rightarrow histogrammed

Data Overview at 0° , E = 1.4 GeV (Back View)

- All points at 0° inclination: mean charge/event [mV×ns]
- Points above y = 153 mm not possible due to table position
- Signals visible for all positions including corners

Light Yield at 0° , E = 1.4 GeV

• Geometric mean = $\sqrt{Yield_{up} \times Yield_{down}}$

Light Yield at 0° , E = 1.4 GeV

- Geometric mean higher when closer to WOMs as expected
- More light detected for higher beam energy

Light Share at 0° , E = 1.4 GeV

- Light share between WOMs varies widely with *y*-coordinate
- WOM down measures more light when *y* < 0 as expected

Light Yield at Angles, E = 1.4 GeV

- Larger angle \rightarrow particle travels further in scintillator
- Light yield increases with angle as expected

Silicon Pad WOM Up

- Mean charge/event: E = 1.4/3.4 GeV, beam at (0,0), 0°
- Silicon pad \rightarrow difficult to line up properly with WOM
- Optical gel performs $\approx 10\%$ better than silicon pad
- Silicon pad after removing SiPM array (right)

Comparison to Simulation

- Simulation has more consistent light yields for all points
- Reduce wall reflectivity to better match data

Comparison to Simulation: Changing Reflectivity

- All 23 points at 0°, E = 1.4 GeV used
- χ^2 between channels used to compare reflectivities
- 65% of measured reflectivity gives best results

Comparison to Simulation: 65% Reflectivity

Modified simulation to be used for training reconstruction

• For more info \rightarrow M. Jadidi

- Based on results from simulation \rightarrow full reflectivity leads to $\sim 3\times$ higher photon yield than 65% reflectivity
- Better optical coupling can improve light yields

Data Comparison to Simulation

- Calibration too much noise to resolve single photons
 - Cosmics?
 - Radioactive source?
 - Separate calibration needed for each channel

Upcoming Deadlines

- 4 cells \rightarrow CERN μ test beam: late 2023

Ongoing R+D

- Simulation: detector response, WOMs, reconstruction
- Mechanics: WLS optimisation, cell coating, support structure
- Electronics: SiPMs, PCBs, signal shaping + digitisation

Data: WOM Up vs Down at (0,0), 0° , E = 1.4 GeV

- Systematic effect leading to higher light yield in WOM up
- Large fluctuations give large σ on yields

Simulation: WOM Up vs Down at (0,0), 0° , E = 1.4 GeV

- Direct correlation between light yield in both WOMs
- Smaller fluctuations give small σ on yields

