Time response and efficiency of the 1-cell SBT detector

Alessia Brignoli

Humboldt Universität zu Berlin

3rd High-D consortium meeting

9th- 10th February 2023

Bundesministerium für Bildung und Forschung

Test beam

Test beam October 2022 – DESY (Hamburg)

Measurements:

- different positions

Test beam

Test beam October 2022 – DESY (Hamburg)

Measurements:

- different positions
- different rotation angles

Test beam

Test beam October 2022 – DESY (Hamburg)

Measurements:

- different positions
- different rotation angles
- different beam energies (1.4 GeV, 2.4 GeV, 3.4 GeV, 4.4 GeV, 5.4 GeV)
- with and without an additional 1cm steel plate

Current results:

- calculation of the detector effiency

(0° rotation – 5 energies: 1.4 GeV, 2.4 GeV, 3.4 GeV, 4.4 GeV, 5.4 GeV)

- timing performance study (0° rotation - 1.4 GeV)

Data

- 40 SiPMs are grouped in 8 groups of 5 SiPMs each (channel)
- each channel records a waveform

For this analysis:

- charge calculated as the signal integral in a choosen time window
- light yield calculated as the integral in a choosen time window
- first photon arrival time

HIG

To calculate the charge over a WOM tube, for each event:

- sum of waveforms

To calculate the charge over a WOM tube, for each event:

- sum of waveforms
- integral over 20 ns

To calculate the efficiency:

$$\frac{N_{triggered} - N_{rejected}}{N_{triggered}}$$

With 68% confidence interval quoted using the ClopperPearson method

The rejected events are dark count events

To decide where to apply the rejected cut a dark counts measurement was used

Dark count measurements

The dark counts measurement was performed:

- triggering on one of the beam telescope PMTs
- without the positron beam

N_{c>200}

 $N_{\it triggered}$

The dark counts measurement was performed:

- triggering on one of the PMT
- without the positron beam

Condition to calculate the efficiency of the entire detector:

Efficiency results

- Slight decrease of efficiency with decreasing distance from WOM (as expected)
- Increasing of the effieciency with increasing beam energy (as expected)
- The total efficiency is higher than the one for the single WOM tube

Comparison with previous results

Last test beam (2022) results:

Previous test beam (2020) results:

[Efficiency studies of a liquid-scintillator detector based on Wavelength-shifting Optical Modules – J. Zimmermann (10 2020)]

Goals:

Determine time and position of a particle crossing the detector

Calculation of the average time of the first arrival photon for the 4 trigger PMTs T_{PMT}

Calculation of the average time of the first arrival photon for each WOM tube (T_{up} , T_{down}), subtracting $\overline{T_{PMT}}$ for each event

Calculation of the light yield for each WOM tube for each event (LY_{up} , LY_{down})

The time from each WOM tube is calculating:

- summing of signal of each SiPMs over WOM tube
- smoothing procedure
- CDF 20% of the maximum of the signal

09-02-2023 A. Brignoli – Humboldt University

The time from each WOM tube is calculating:

- summing of signal of each sipms over WOM tube
- smoothing procedure
- CDF 20% of the maximum of the signal

Results:

$$\overline{T} = (T_{up} + T_{down})/2$$
$$\Delta T = T_{up} - T_{down}$$
$$\xi = LY_{down}/LY_{up}$$
$$\xi_{down} = LY_{down}/LY_{tot}$$

comparison with Monte Carlo simulation (with 65% of the original reflectivity of the coating)

Timing performance results

Timing performance results

Conclusions

Results:

- Time resolution for fixed particle position: < 1 ns
- Time variation over detector size: $\pm~1.8~\mathrm{ns}$
- Could be partially reduced using:

$$\Delta T = T_{up} - T_{down} \qquad \xi = LY_{down} / LY_{up} \qquad \xi_{down} = LY_{down} / LY_{tot}$$

- These observables also contain info about particle crossing position in y direction

Next steps:

- Analysis with different rotation angles
- Analysis with different energies

- Single channels timing and light yield information 09-02-2023 A. Brignoli – Humboldt University

Thank you